Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
1.
Nat Chem Biol ; 19(7): 887-899, 2023 07.
Article in English | MEDLINE | ID: mdl-37231268

ABSTRACT

A major pharmacological assumption is that lowering disease-promoting protein levels is generally beneficial. For example, inhibiting metastasis activator BACH1 is proposed to decrease cancer metastases. Testing such assumptions requires approaches to measure disease phenotypes while precisely adjusting disease-promoting protein levels. Here we developed a two-step strategy to integrate protein-level tuning, noise-aware synthetic gene circuits into a well-defined human genomic safe harbor locus. Unexpectedly, engineered MDA-MB-231 metastatic human breast cancer cells become more, then less and then more invasive as we tune BACH1 levels up, irrespective of the native BACH1. BACH1 expression shifts in invading cells, and expression of BACH1's transcriptional targets confirm BACH1's nonmonotone phenotypic and regulatory effects. Thus, chemical inhibition of BACH1 could have unwanted effects on invasion. Additionally, BACH1's expression variability aids invasion at high BACH1 expression. Overall, precisely engineered, noise-aware protein-level control is necessary and important to unravel disease effects of genes to improve clinical drug efficacy.


Subject(s)
Basic-Leucine Zipper Transcription Factors , Breast Neoplasms , Humans , Female , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Breast Neoplasms/metabolism , Neoplasm Metastasis
2.
FEBS J ; 290(12): 3040-3058, 2023 06.
Article in English | MEDLINE | ID: mdl-35486022

ABSTRACT

Tumour-associated macrophages (TAMs) are highly plastic and are broadly grouped into two major functional states, namely the pro-inflammatory M1-type and the pro-tumoural M2-type. Conversion of the functional states of TAMs is regulated by various cytokines, chemokines growth factors and other secreted factors in the microenvironment. Dysregulated metabolism is a hallmark of cancer. Emerging evidence suggests that metabolism governs the TAM differentiation and functional conversation in support of tumour growth and metastasis. Aside from the altered metabolism reprogramming in TAMs, extracellular metabolites secreted by cancer, stromal and/or other cells within the tumour microenvironment have been found to regulate TAMs through passive competition for metabolite availability and direct regulation via receptor/transporter-mediated signalling reaction. In this review, we focus on the regulatory roles of different metabolites and metabolic pathways in TAM conversion and function. We also discuss if the dysregulated metabolism in TAMs can be exploited for the development of new therapeutic strategies against cancer.


Subject(s)
Neoplasms , Tumor-Associated Macrophages , Humans , Tumor-Associated Macrophages/metabolism , Macrophages/metabolism , Cytokines/metabolism , Neoplasms/pathology , Metabolic Networks and Pathways , Tumor Microenvironment
3.
EMBO Rep ; 22(5): e50781, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33655623

ABSTRACT

Treatment of triple-negative breast cancer (TNBC) remains challenging due to a lack of effective targeted therapies. Dysregulated glucose uptake and metabolism are essential for TNBC growth. Identifying the molecular drivers and mechanisms underlying the metabolic vulnerability of TNBC is key to exploiting dysregulated cancer metabolism for therapeutic applications. Mitogen-inducible gene-6 (MIG-6) has long been thought of as a feedback inhibitor that targets activated EGFR and suppresses the growth of tumors driven by constitutive activated mutant EGFR. Here, our bioinformatics and histological analyses uncover that MIG-6 is upregulated in TNBC and that MIG-6 upregulation is positively correlated with poorer clinical outcomes in TNBC. Metabolic arrays and functional assays reveal that MIG-6 drives glucose metabolism reprogramming toward glycolysis. Mechanistically, MIG-6 recruits HAUSP deubiquitinase for stabilizing HIF1α protein expression and the subsequent upregulation of GLUT1 and other HIF1α-regulated glycolytic genes, substantiating the comprehensive regulation of MIG-6 in glucose metabolism. Moreover, our mouse studies demonstrate that MIG-6 regulates GLUT1 expression in tumors and subsequent tumor growth in vivo. Collectively, this work reveals that MIG-6 is a novel prognosis biomarker, metabolism regulator, and molecular driver of TNBC.


Subject(s)
Triple Negative Breast Neoplasms , Adaptor Proteins, Signal Transducing/genetics , Animals , Cell Line, Tumor , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Glucose , Glycolysis/genetics , Humans , Mice , Triple Negative Breast Neoplasms/genetics , Tumor Suppressor Proteins/genetics
4.
Cancers (Basel) ; 13(4)2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33546453

ABSTRACT

Cancer response to chemotherapy is regulated not only by intrinsic sensitivity of cancer cells but also by tumor microenvironment. Tumor hypoxia, a condition of low oxygen level in solid tumors, is known to increase the resistance of cancer cells to chemotherapy. Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Due to lack of target in TNBC, chemotherapy is the only approved systemic treatment. We evaluated the effect of hypoxia on chemotherapy resistance in TNBC in a series of in vitro and in vivo experiments. Furthermore, we synthesized the calcium peroxide-modified magnetic nanoparticles (CaO2-MNPs) with the function of oxygen generation to improve and enhance the therapeutic efficiency of doxorubicin treatment in the hypoxia microenvironment of TNBC. The results of gene set enrichment analysis (GSEA) software showed that the hypoxia and autophagy gene sets are significantly enriched in TNBC patients. We found that the chemical hypoxia stabilized the expression of hypoxia-inducible factor 1α (HIF-1α) protein and increased doxorubicin resistance in TNBC cells. Moreover, hypoxia inhibited the induction of apoptosis and autophagy by doxorubicin. In addition, CaO2-MNPs promoted ubiquitination and protein degradation of HIF-1α. Furthermore, CaO2-MNPs inhibited autophagy and induced apoptosis in TNBC cells. Our animal studies with an orthotopic mouse model showed that CaO2-MNPs in combination with doxorubicin exhibited a stronger tumor-suppressive effect on TNBC, compared to the doxorubicin treatment alone. Our findings suggest that combined with CaO2-MNPs and doxorubicin attenuates HIF-1α expression to improve the efficiency of chemotherapy in TNBC.

5.
FEBS Lett ; 595(2): 241-252, 2021 01.
Article in English | MEDLINE | ID: mdl-33205415

ABSTRACT

The ubiquitin ligase RNF8 is known to induce epithelial-to-mesenchymal (EMT) transition and metastasis in triple-negative breast cancer (TNBC). Besides EMT, Rho GTPases have been shown as key regulators in metastasis. In this study, we investigated the role of RNF8 in regulating Rho GTPases and cell motility. We find that RNF8 knockdown in TNBC cells attenuates the protein and mRNA levels of Ras homolog family member A (RHOA) and cell division cycle 42 (CDC42). We show that the formation of filopodia, focal adhesions, and the association of focal adhesions to stress fibers is impaired upon RNF8 knockdown. Cell migration is significantly inhibited by RNF8 knockdown. Our study suggests a potential novel role for RNF8 in mediating cell migration in TNBC through regulation of the Rho GTPases RHOA and CDC42.


Subject(s)
DNA-Binding Proteins/metabolism , Triple Negative Breast Neoplasms/metabolism , Ubiquitin-Protein Ligases/metabolism , cdc42 GTP-Binding Protein/genetics , rhoA GTP-Binding Protein/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , Focal Adhesions/metabolism , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HeLa Cells , Humans , Proteolysis , Pseudopodia/metabolism , Triple Negative Breast Neoplasms/genetics , Ubiquitin-Protein Ligases/genetics , cdc42 GTP-Binding Protein/metabolism , rhoA GTP-Binding Protein/metabolism
6.
Mol Cell Oncol ; 6(5): e1644599, 2019.
Article in English | MEDLINE | ID: mdl-31528705

ABSTRACT

Our study uncovered that HectH9 drives glycolysis and tumor development by K63-linked ubiquitination of Hexokinase 2 (HK2). This mechanism is critical for HK2 localization to mitochondria for activating HK2's functions in glycolysis promotion and apoptosis inhibition, suggesting that targeting HectH9 is a new strategy to tackle metabolism-addicted tumors.

7.
Nat Commun ; 10(1): 2625, 2019 06 14.
Article in English | MEDLINE | ID: mdl-31201299

ABSTRACT

Enormous efforts have been made to target metabolic dependencies of cancer cells for developing new therapies. However, the therapeutic efficacy of glycolysis inhibitors is limited due to their inability to elicit cell death. Hexokinase 2 (HK2), via its mitochondrial localization, functions as a central nexus integrating glycolysis activation and apoptosis resilience. Here we identify that K63-linked ubiquitination by HectH9 regulates the mitochondrial localization and function of HK2. Through stable isotope tracer approach and functional metabolic analyses, we show that HectH9 deficiency impedes tumor glucose metabolism and growth by HK2 inhibition. The HectH9/HK2 pathway regulates cancer stem cell (CSC) expansion and CSC-associated chemoresistance. Histological analyses show that HectH9 expression is upregulated and correlated with disease progression in prostate cancer. This work uncovers that HectH9 is a novel regulator of HK2 and cancer metabolism. Targeting HectH9 represents an effective strategy to achieve long-term tumor remission by concomitantly disrupting glycolysis and inducing apoptosis.


Subject(s)
Hexokinase/metabolism , Neoplastic Stem Cells/physiology , Prostatic Neoplasms/pathology , Tumor Suppressor Proteins/metabolism , Ubiquitin-Protein Ligases/metabolism , Animals , Apoptosis , Cell Line, Tumor , Cell Proliferation , Disease Progression , Female , Glycolysis , HEK293 Cells , Humans , Male , Mice , Mice, Nude , Prostate/pathology , RNA, Small Interfering , Tumor Suppressor Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitination , Up-Regulation , Xenograft Model Antitumor Assays
8.
Cell Death Dis ; 10(4): 285, 2019 03 28.
Article in English | MEDLINE | ID: mdl-30918246

ABSTRACT

Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer that harbors enriched cancer stem cell (CSC) populations in tumors. Conventional chemotherapy is a standard treatment for TNBC, but it spares the CSC populations, which cause tumor recurrence and progression. Therefore, identification of the core molecular pathway that controls CSC activity and expansion is essential for developing effective therapeutics for TNBC. In this study, we identify that USP2 deubiquitinating enzyme is upregulated in CSCs and is a novel regulator of CSCs. Genetic and pharmacological targeting of USP2 substantially inhibits the self-renewal, expansion and chemoresistance of CSCs. We show that USP2 maintains the CSC population by activating self-renewing factor Bmi1 and epithelial-mesenchymal transition through Twist upregulation. Mechanistically, USP2 promotes Twist stabilization by removing ß-TrCP-mediated ubiquitination of Twist. Animal studies indicate that pharmacological inhibition of USP2 suppresses tumor progression and sensitizes tumor responses to chemotherapy in TNBC. Furthermore, the histological analyses reveal a positive correlation between USP2 upregulation and lymph node metastasis. Our findings together demonstrate a previously unrecognized role of USP2 in mediating Twist activation and CSC enrichment, suggesting that targeting USP2 is a novel therapeutic strategy to tackle TNBC.


Subject(s)
Drug Resistance, Neoplasm/drug effects , Drug Resistance, Neoplasm/genetics , Neoplastic Stem Cells/metabolism , Triple Negative Breast Neoplasms/drug therapy , Triple Negative Breast Neoplasms/metabolism , Ubiquitin Thiolesterase/antagonists & inhibitors , Ubiquitin Thiolesterase/genetics , Animals , Cell Line, Tumor , Doxorubicin/therapeutic use , Epithelial-Mesenchymal Transition/genetics , Female , Gene Knockdown Techniques , HEK293 Cells , Humans , Mice , Mice, Nude , Neoplasm Recurrence, Local/prevention & control , Nuclear Proteins/metabolism , Polycomb Repressive Complex 1/metabolism , Triple Negative Breast Neoplasms/pathology , Tumor Burden/drug effects , Twist-Related Protein 1/metabolism , Xenograft Model Antitumor Assays
10.
Stem Cells Int ; 2016: 5285892, 2016.
Article in English | MEDLINE | ID: mdl-27840647

ABSTRACT

Cancer stem cell (CSC) has become recognized for its role in both tumorigenesis and poor patient prognosis in recent years. Traditional therapeutics are unable to effectively eliminate this group of cells from the bulk population of cancer cells, allowing CSCs to persist posttreatment and thus propagate into secondary tumors. The therapeutic potential of eliminating CSCs, to decrease tumor relapse, has created a demand for identifying mechanisms that directly target and eliminate cancer stem cells. Molecular profiling has shown that cancer cells and tumors that exhibit the CSC phenotype also express genes associated with the epithelial-to-mesenchymal transition (EMT) feature. Ample evidence has demonstrated that upregulation of master transcription factors (TFs) accounting for the EMT process such as Snail/Slug and Twist can reprogram cancer cells from differentiated to stem-like status. Despite being appealing therapeutic targets for tackling CSCs, pharmacological approaches that directly target EMT-TFs remain impossible. In this review, we will summarize recent advances in the regulation of Snail/Slug and Twist at transcriptional, translational, and posttranslational levels and discuss the clinical implication and application for EMT blockade as a promising strategy for CSC targeting.

11.
Mol Cell ; 63(6): 1021-33, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27618486

ABSTRACT

Twist has been shown to cause treatment failure, cancer progression, and cancer-related death. However, strategies that directly target Twist are not yet conceivable. Here we reveal that K63-linked ubiquitination is a crucial regulatory mechanism for Twist activation. Through an E3 ligase screen and biochemical studies, we unexpectedly identified that RNF8 functions as a direct Twist activator by triggering K63-linked ubiquitination of Twist. RNF8-promoted Twist ubiquitination is required for Twist localization to the nucleus for subsequent EMT and CSC functions, thereby conferring chemoresistance. Our histological analyses showed that RNF8 expression is upregulated and correlated with disease progression, EMT features, and poor patient survival in breast cancer. Moreover, RNF8 regulates cancer cell migration and invasion and cancer metastasis, recapitulating the effect of Twist. Together, our findings reveal a previously unrecognized tumor-promoting function of RNF8 and provide evidence that targeting RNF8 is an appealing strategy to tackle tumor aggressiveness and treatment resistance.


Subject(s)
Breast Neoplasms/genetics , DNA-Binding Proteins/genetics , Drug Resistance, Neoplasm/genetics , Gene Expression Regulation, Neoplastic , Neoplastic Stem Cells/metabolism , Nuclear Proteins/genetics , Twist-Related Protein 1/genetics , Animals , Antineoplastic Agents/therapeutic use , Breast Neoplasms/drug therapy , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , DNA Damage , DNA-Binding Proteins/antagonists & inhibitors , DNA-Binding Proteins/metabolism , Disease Progression , Epithelial-Mesenchymal Transition , Female , Genes, Reporter , Humans , Luciferases/genetics , Luciferases/metabolism , Lysine/metabolism , MCF-7 Cells , Mice, Nude , Neoplasm Invasiveness , Neoplasm Transplantation , Neoplastic Stem Cells/drug effects , Neoplastic Stem Cells/pathology , Nuclear Proteins/antagonists & inhibitors , Nuclear Proteins/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Signal Transduction , Survival Analysis , Twist-Related Protein 1/antagonists & inhibitors , Twist-Related Protein 1/metabolism , Ubiquitin-Protein Ligases , Ubiquitination
12.
Cancer Res ; 76(4): 831-43, 2016 Feb 15.
Article in English | MEDLINE | ID: mdl-26747897

ABSTRACT

Entire or partial deletions of the male-specific Y chromosome are associated with tumorigenesis, but whether any male-specific genes located on this chromosome play a tumor-suppressive role is unknown. Here, we report that the histone H3 lysine 4 (H3K4) demethylase JARID1D (also called KDM5D and SMCY), a male-specific protein, represses gene expression programs associated with cell invasiveness and suppresses the invasion of prostate cancer cells in vitro and in vivo. We found that JARID1D specifically repressed the invasion-associated genes MMP1, MMP2, MMP3, MMP7, and Slug by demethylating trimethyl H3K4, a gene-activating mark, at their promoters. Our additional results demonstrated that JARID1D levels were highly downregulated in metastatic prostate tumors compared with normal prostate tissues and primary prostate tumors. Furthermore, the JARID1D gene was frequently deleted in metastatic prostate tumors, and low JARID1D levels were associated with poor prognosis in prostate cancer patients. Taken together, these findings provide the first evidence that an epigenetic modifier expressed on the Y chromosome functions as an anti-invasion factor to suppress the progression of prostate cancer. Our results also highlight a preclinical rationale for using JARID1D as a prognostic marker in advanced prostate cancer.


Subject(s)
Cell Transformation, Neoplastic/genetics , Genes, Tumor Suppressor , Histone Demethylases/genetics , Histone Demethylases/metabolism , Prostatic Neoplasms/genetics , Animals , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Male , Mice , Minor Histocompatibility Antigens , Neoplasm Invasiveness , Neoplasm Metastasis , Prostatic Neoplasms/pathology , Transfection
13.
Mol Cell Oncol ; 3(6): e1242454, 2016.
Article in English | MEDLINE | ID: mdl-28090581

ABSTRACT

The RING finger protein 8 (RNF8)-induced ubiquitination signaling cascade promotes DNA repair and maintains genomic stability. Our study reveals an unexpected action of RNF8 in promoting cancer metastasis, cancer stem cell formation, and chemoresistance through the regulation of TWIST lysine 63 (K63)-linked ubiquitination, suggesting that RNF8 may serve as a new cancer prognosis marker and therapeutic target.

14.
Mol Cell ; 58(6): 989-1000, 2015 Jun 18.
Article in English | MEDLINE | ID: mdl-26051179

ABSTRACT

The regulation of RagA(GTP) is important for amino-acid-induced mTORC1 activation. Although GATOR1 complex has been identified as a negative regulator for mTORC1 by hydrolyzing RagA(GTP), how GATOR1 is recruited to RagA to attenuate mTORC1 signaling remains unclear. Moreover, how mTORC1 signaling is terminated upon amino acid stimulation is also unknown. We show that the recruitment of GATOR1 to RagA is induced by amino acids in an mTORC1-dependent manner. Skp2 E3 ligase drives K63-linked ubiquitination of RagA, which facilitates GATOR1 recruitment and RagA(GTP) hydrolysis, thereby providing a negative feedback loop to attenuate mTORC1 lysosomal recruitment and prevent mTORC1 hyperactivation. We further demonstrate that Skp2 promotes autophagy but inhibits cell size and cilia growth through RagA ubiquitination and mTORC1 inhibition. We thereby propose a negative feedback whereby Skp2-mediated RagA ubiquitination recruits GATOR1 to restrict mTORC1 signaling upon sustained amino acid stimulation, which serves a critical mechanism to maintain proper cellular functions.


Subject(s)
Amino Acids/pharmacology , Monomeric GTP-Binding Proteins/metabolism , Multiprotein Complexes/metabolism , S-Phase Kinase-Associated Proteins/metabolism , TOR Serine-Threonine Kinases/metabolism , Animals , Autophagy/genetics , Cell Line, Tumor , Enzyme Activation/drug effects , Feedback, Physiological/drug effects , Guanosine Triphosphate/metabolism , HEK293 Cells , Humans , Immunoblotting , Lysine/metabolism , Lysosomes/metabolism , Mechanistic Target of Rapamycin Complex 1 , Mice , Mice, Knockout , Microscopy, Confocal , Models, Biological , NIH 3T3 Cells , Protein Binding/drug effects , RNA Interference , S-Phase Kinase-Associated Proteins/genetics , Ubiquitination/drug effects
15.
Nat Commun ; 6: 6641, 2015 Mar 30.
Article in English | MEDLINE | ID: mdl-25818643

ABSTRACT

Understanding the mechanism by which cell growth, migration, polyploidy, and tumorigenesis are regulated may provide important therapeutic strategies for cancer therapy. Here we identify the Skp2-macroH2A1 (mH2A1)-cyclin-dependent kinase 8 (CDK8) axis as a critical pathway for these processes, and deregulation of this pathway is associated with human breast cancer progression and patient survival outcome. We showed that mH2A1 is a new substrate of Skp2 SCF complex whose degradation by Skp2 promotes CDK8 gene and protein expression. Strikingly, breast tumour suppression on Skp2 deficiency can be rescued by mH2A1 knockdown or CDK8 restoration using mouse tumour models. We further show that CDK8 regulates p27 protein expression by facilitating Skp2-mediated p27 ubiquitination and degradation. Our study establishes a critical role of Skp2-mH2A1-CDK8 axis in breast cancer development and targeting this pathway offers a promising strategy for breast cancer therapy.


Subject(s)
Breast Neoplasms/metabolism , Carcinogenesis/genetics , Carcinoma/metabolism , Cyclin-Dependent Kinase 8/metabolism , G2 Phase Cell Cycle Checkpoints/genetics , Histones/metabolism , S-Phase Kinase-Associated Proteins/genetics , Animals , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p27/metabolism , Fibroblasts , Humans , Mice , Mice, Knockout , S-Phase Kinase-Associated Proteins/metabolism , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitination
16.
Mol Cell ; 57(6): 1022-1033, 2015 Mar 19.
Article in English | MEDLINE | ID: mdl-25728766

ABSTRACT

LKB1 is activated by forming a heterotrimeric complex with STRAD and MO25. Recent studies suggest that LKB1 has pro-oncogenic functions, besides acting as a tumor suppressor. How the LKB1 activity is maintained and how LKB1 regulates cancer development are largely unclear. Here we show that K63-linked LKB1 polyubiquitination by Skp2-SCF ubiquitin ligase is critical for LKB1 activation by maintaining LKB1-STRAD-MO25 complex integrity. We further demonstrate that oncogenic Ras acts upstream of Skp2 to promote LKB1 polyubiquitination by activating Skp2-SCF ubiquitin ligase. Moreover, Skp2-mediated LKB1 polyubiquitination is required for energy-stress-induced cell survival. We also detected overexpression of Skp2 and LKB1 in late-stage hepatocellular carcinoma (HCC), and their overexpression predicts poor survival outcomes. Finally, we show that Skp2-mediated LKB1 polyubiquitination is important for HCC tumor growth in vivo. Our study provides new insights into the upstream regulation of LKB1 activation and suggests a potential target, the Ras/Skp2/LKB1 axis, for cancer therapy.


Subject(s)
Liver Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , S-Phase Kinase-Associated Proteins/metabolism , AMP-Activated Protein Kinase Kinases , AMP-Activated Protein Kinases/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Aged , Animals , Calcium-Binding Proteins/metabolism , Cell Survival , Female , Humans , Liver Neoplasms/metabolism , Male , Mice, Nude , Middle Aged , Protein Serine-Threonine Kinases/genetics , Retrospective Studies , S-Phase Kinase-Associated Proteins/genetics , Stress, Physiological , Ubiquitination , Xenograft Model Antitumor Assays , ras Proteins/genetics , ras Proteins/metabolism
17.
Cell Biosci ; 4(1): 59, 2014.
Article in English | MEDLINE | ID: mdl-25309720

ABSTRACT

Akt regulates critical cellular processes including cell survival and proliferation, glucose metabolism, cell migration, cancer progression and metastasis through phosphorylation of a variety of downstream targets. The Akt pathway is one of the most prevalently hyperactivated signaling pathways in human cancer, thus, research deciphering molecular mechanisms which underlie the aberrant Akt activation has received enormous attention. The PI3K-dependent Akt serine/threonine phosphorylation by PDK1 and mTORC2 has long been thought to be the primary mechanism accounting for Akt activation. However, this regulation alone does not sufficiently explain how Akt hyperactivation can occur in tumors with normal levels of PI3K/PTEN activity. Mounting evidence demonstrates that aberrant Akt activation can be attributed to other posttranslational modifications, which include tyrosine phosphorylation, O-GlcNAcylation, as well as lysine modifications: ubiquitination, SUMOylation and acetylation. Among them, K63-linked ubiquitination has been shown to be a critical step for Akt signal activation by facilitating its membrane recruitment. Deficiency of E3 ligases responsible for growth factor-induced Akt activation leads to tumor suppression. Therefore, a comprehensive understanding of posttranslational modifications in Akt regulation will offer novel strategies for cancer therapy.

18.
Biochem Biophys Res Commun ; 445(3): 566-71, 2014 Mar 14.
Article in English | MEDLINE | ID: mdl-24561244

ABSTRACT

The homing ability of hematopoietic stem cells (HSCs) was a critical step for transplantation and subsequent hematopoiesis. Although the HSC transplantation was widely used for many diseases, the mechanism by which HSC homing was regulated remained poorly understood. F-box protein S-phase kinase associated protein2 (Skp2), a component of the Skp2-SCF E3 ligase complex, was regarded as a cell cycle regulator by controlling the level of p21 and p27 through ubiquitination. We recently reported an important role of Skp2 in maintaining HSC pool size, quiescent stage and self-renewal ability. In this current study, we showed that Skp2 was a novel and critical regulator for maintaining the homing of HSCs as well as their residence in the endosteal niche. Microarray analysis together with biochemical validations revealed that Skp2 deficiency profoundly reduced the expression of ß-catenin and its target genes. Knockdown of ß-catenin mimicked the decline of HSC homing upon Skp2 deficiency, suggesting that Skp2 may regulate ß-catenin and its target gene expression to orchestrate HSC homing. Our study not only identified Skp2 as a new regulator for maintaining ß-catenin expression and HSC homing, but also suggested that Skp2 may serve as a predictive marker for monitoring the transplantation efficiency.


Subject(s)
Down-Regulation , Hematopoietic Stem Cells/cytology , S-Phase Kinase-Associated Proteins/metabolism , beta Catenin/genetics , Animals , Cell Cycle , Cell Movement , Cells, Cultured , Gene Deletion , Hematopoietic Stem Cells/metabolism , Mice , Mice, Inbred C57BL , S-Phase Kinase-Associated Proteins/genetics , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , beta Catenin/metabolism
20.
Cancer Res ; 74(6): 1705-17, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24491801

ABSTRACT

Histone methyltransferases and demethylases reversibly modulate histone lysine methylation, which is considered a key epigenetic mark associated with gene regulation. Recently, aberrant regulation of gene expression by histone methylation modifiers has emerged as an important mechanism for tumorigenesis. However, it remains largely unknown how histone methyltransferases and demethylases coregulate transcriptional profiles for cancer cell characteristics. Here, we show that in breast cancer cells, the histone H3 lysine 27 (H3K27) demethylase UTX (also known as KDM6A) positively regulates gene expression programs associated with cell proliferation and invasion. The majority of UTX-controlled genes, including a cohort of oncogenes and prometastatic genes, are coregulated by the H3K4 methyltransferase mixed lineage leukemia 4 (MLL4, also called ALR, KMT2D, and MLL2). UTX interacted with a C-terminal region of MLL4. UTX knockdown resulted in significant decreases in the proliferation and invasiveness of breast cancer cells in vitro and in a mouse xenograft model. Such defective cellular characteristics of UTX-depleted cells were phenocopied by MLL4 knockdown cells. UTX-catalyzed demethylation of trimethylated H3K27 and MLL4-mediated trimethylation at H3K4 occurred interdependently at cotarget genes of UTX and MLL4. Clinically, high levels of UTX or MLL4 were associated with poor prognosis in patients with breast cancer. Taken together, these findings uncover that coordinated regulation of gene expression programs by a histone methyltransferase and a histone demethylase is coupled to the proliferation and invasion of breast cancer cells.


Subject(s)
Breast Neoplasms/metabolism , Cell Proliferation , DNA-Binding Proteins/physiology , Gene Expression Regulation, Neoplastic , Histone Demethylases/physiology , Nuclear Proteins/physiology , Animals , Breast Neoplasms/genetics , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Line, Tumor , DNA-Binding Proteins/chemistry , Female , Histone-Lysine N-Methyltransferase , Histones/metabolism , Humans , Kaplan-Meier Estimate , Methylation , Mice , Mice, Nude , Neoplasm Invasiveness , Neoplasm Transplantation , Protein Interaction Domains and Motifs , Protein Processing, Post-Translational
SELECTION OF CITATIONS
SEARCH DETAIL
...