Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 13(2)2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33477798

ABSTRACT

The research on cellulose fiber-reinforced nanocomposites has increased by an unprecedented magnitude over the past few years due to its wide application range and low production cost. However, the incompatibility between cellulose and most thermoplastics has raised significant challenges in composite fabrication. This paper addresses the behavior of plasma-modified polyethylene (PE) reinforced with cellulose nanofibers extracted from isora plants (i.e., isora nanofibrils (INFs)). The crystallization kinetics of PE-INF composites were explained using the Avrami model. The effect of cellulose nanofillers on tuning the physiochemical properties of the nanocomposite was also explored in this work. The increase in mechanical properties was due to the uniform dispersion of fillers in the PE. The investigation on viscoelastic properties confirmed good filler-matrix interactions, facilitating the stress transfer.

2.
Polymers (Basel) ; 12(12)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322501

ABSTRACT

The studies of phase behavior, dielectric relaxation, and other properties of poly(ethylene oxide) (PEO)/poly(methyl acrylate) (PMA) blends with the addition of lithium perchlorate (LiClO4) were done for different blend compositions. Samples were prepared by a solution casting technique. The binary PEO/PMA blends exhibit a single and compositional-dependent glass transition temperature (Tg), which is also true for ternary mixtures of PEO/PMA/LiClO4 when PEO was in excess with low content of salt. These may indicate miscibility of the constituents for the molten systems and amorphous domains of the systems at room temperature from the macroscopic point of view. Subsequently, the morphology of PEO/PMA blends with or without salt are correlated to the phase behavior of the systems. Phase morphology and molecular interaction of polymer chains by salt ions of the systems may rule the dielectric or electric relaxation at room temperature, which was estimated using electrochemical impedance spectroscopy (EIS). The frequency-dependent impedance spectra are of interest for the elucidation of polarization and relaxation of the charged entities for the systems. Relaxation can be noted only when a sufficient amount of salt is added into the systems.

3.
Polymers (Basel) ; 12(5)2020 Apr 27.
Article in English | MEDLINE | ID: mdl-32349454

ABSTRACT

Solid polymer electrolytes are mixtures of polymer and inorganic salt. There are quite a number of studies dealing with the relationship between electric conductivity and structural relaxation in solid polymer electrolytes. We present a phenomenological approach based on fluctuation-dissipation processes. Phase heterogeneity appears in poly(ethylene oxide) (PEO) of high molecular mass and its blends due to crystallization and accompanying phase segregation. Addition of salt hampers crystallization, causing dynamic heterogeneity of the salt mixtures. Conductivity is bound to amorphous phase; the conductivity mechanism does not depend on content of added salt. One observes dispersion of conductivity relaxation only at low frequency. This is also true for blends with poly(methyl methacrylate) (PMMA). In blends, the dynamics of relaxation depend on glass transition of the system. Glassy PMMA hampers relaxation at room temperature. Relaxation can only be observed when salt content is sufficiently high. As long as blends are in rubbery state at room temperature, they behave PEO-like. Blends turn into glassy state when PMMA is in excess. Decoupling of long-ranging and dielectric short-ranging relaxation can be observed. Conductivity mechanism in PEO, as well as in blends with PMMA were analyzed in terms of complex impedance Z*, complex permittivity, tangent loss spectra and complex conductivity.

4.
Polymers (Basel) ; 12(3)2020 Mar 24.
Article in English | MEDLINE | ID: mdl-32213997

ABSTRACT

The influence of morphology on the rheological properties of poly(ethylene oxide) (PEO) and natural rubber-graft-poly(methyl methacrylate) (NR-g-PMMA) blends in the melt was investigated. The blends were prepared at different blend compositions by a solution-casting method. Linear viscoelastic shear oscillations measurements were performed in order to determine the elastic and viscous properties of the blends in the melt. The rheological results suggested that the blending of the two constituents reduced the elasticity and viscosity of the blends. The addition of an even small amount of NR-g-PMMA to PEO changed the liquid-like behavior of PEO to more solid-like behavior. Morphological investigations were carried out by optical microscopy to establish the relationship between morphology and melt viscosity. Depending on the blend compositions and viscosities, either droplet-matrix or co-continuous morphologies was observed. PEO/NR-g-PMMA blends exhibited a broad co-continuity range, and phase inversion was suggested to occur at the PEO/NR-g-PMMA blend with a mass ratio of 60/40 (m/m), when NR-g-PMMA was added to PEO as a matrix.

5.
Bioresour Technol ; 98(7): 1333-8, 2007 May.
Article in English | MEDLINE | ID: mdl-16822665

ABSTRACT

Performance of the sequencing batch reactor (SBR) treating synthetic phenolic wastewater at influent phenol concentrations from 100 to 1000 mg/L was evaluated. Two identical SBRs were built and operated with FILL, REACT, SETTLE and DRAW periods in the ratio of 4:6:1:1 for a cycle time of 12h. One of the reactors was operated with aerated FILL (R1) and the other with unaerated FILL (R2). The treated effluent quality and the rate of degradation during REACT were the criteria for evaluating performance of the two reactors. The results showed that the FILL mode had no significant influence on the treatment efficiency of phenol and COD for the entire range of influent phenol concentrations investigated. However, reactor R1 required a relatively shorter REACT time for phenol removal as compared to R2. This meant that R1 had the advantage of providing treatment at a higher organic loading rate.


Subject(s)
Bacteria/metabolism , Bioreactors , Phenols/metabolism , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/metabolism , Water Purification/methods , Kinetics , Models, Chemical
SELECTION OF CITATIONS
SEARCH DETAIL
...