Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 13(1): 6895, 2022 Nov 12.
Article in English | MEDLINE | ID: mdl-36371435

ABSTRACT

Superconducting qubits seem promising for useful quantum computers, but the currently wide-spread qubit designs and techniques do not yet provide high enough performance. Here, we introduce a superconducting-qubit type, the unimon, which combines the desired properties of increased anharmonicity, full insensitivity to dc charge noise, reduced sensitivity to flux noise, and a simple structure consisting only of a single Josephson junction in a resonator. In agreement with our quantum models, we measure the qubit frequency, ω01/(2π), and increased anharmonicity α/(2π) at the optimal operation point, yielding, for example, 99.9% and 99.8% fidelity for 13 ns single-qubit gates on two qubits with (ω01, α) = (4.49 GHz, 434 MHz) × 2π and (3.55 GHz, 744 MHz) × 2π, respectively. The energy relaxation seems to be dominated by dielectric losses. Thus, improvements of the design, materials, and gate time may promote the unimon to break the 99.99% fidelity target for efficient quantum error correction and possible useful quantum advantage with noisy systems.

2.
Nature ; 589(7840): 40-43, 2021 01.
Article in English | MEDLINE | ID: mdl-33408376

ABSTRACT

Fermionic atoms in optical lattices have served as a useful model system in which to study and emulate the physics of strongly correlated matter. Driven by the advances of high-resolution microscopy, the current research focus is on two-dimensional systems1-3, in which several quantum phases-such as antiferromagnetic Mott insulators for repulsive interactions4-7 and charge-density waves for attractive interactions8-have been observed. However, the lattice structure of real materials, such as bilayer graphene, is composed of coupled layers and is therefore not strictly two-dimensional, which must be taken into account in simulations. Here we realize a bilayer Fermi-Hubbard model using ultracold atoms in an optical lattice, and demonstrate that the interlayer coupling controls a crossover between a planar antiferromagnetically ordered Mott insulator and a band insulator of spin-singlets along the bonds between the layers. We probe the competition of the magnetic ordering by measuring spin-spin correlations both within and between the two-dimensional layers. Our work will enable the exploration of further properties of coupled-layer Hubbard models, such as theoretically predicted superconducting pairing mechanisms9,10.

3.
Mol Imaging Biol ; 21(1): 95-104, 2019 02.
Article in English | MEDLINE | ID: mdl-29869062

ABSTRACT

PURPOSE: While imaging matrix-associated stem cell transplants aimed for cartilage repair in a rodent arthritis model, we noticed that some transplants formed locally destructive tumors. The purpose of this study was to determine the cause for this tumor formation in order to avoid this complication for future transplants. PROCEDURES: Adipose-derived stem cells (ADSC) isolated from subcutaneous adipose tissue were implanted into 24 osteochondral defects of the distal femur in ten athymic rats and two immunocompetent control rats. All transplants underwent serial magnetic resonance imaging (MRI) up to 6 weeks post-transplantation to monitor joint defect repair. Nine transplants showed an increasing size over time that caused local bone destruction (group 1), while 11 transplants in athymic rats (group 2) and 4 transplants in immunocompetent rats did not. We compared the ADSC implant size and growth rate on MR images, macroscopic features, histopathologic features, surface markers, and karyotypes of these presumed neoplastic transplants with non-neoplastic ADSC transplants. RESULTS: Implants in group 1 showed a significantly increased two-dimensional area at week 2 (p = 0.0092), 4 (p = 0.003), and 6 (p = 0.0205) compared to week 0, as determined by MRI. Histopathological correlations confirmed neoplastic features in group 1 with significantly increased size, cellularity, mitoses, and cytological atypia compared to group 2. Six transplants in group 1 were identified as malignant chondrosarcomas and three transplants as fibromyxoid sarcomas. Transplants in group 2 and immunocompetent controls exhibited normal cartilage features. Both groups showed a normal ADSC phenotype; however, neoplastic ADSC demonstrated a mixed population of diploid and tetraploid cells without genetic imbalance. CONCLUSIONS: ADSC transplants can form tumors in vivo. Preventive actions to avoid in vivo tumor formations may include karyotyping of culture-expanded ADSC before transplantation. In addition, serial imaging of ADSC transplants in vivo may enable early detection of abnormally proliferating cell transplants.


Subject(s)
Adult Stem Cells/transplantation , Arthritis/therapy , Cell Transformation, Neoplastic/pathology , Stem Cell Transplantation/adverse effects , Adult Stem Cells/pathology , Animals , Arthritis/diagnosis , Arthritis/pathology , Bone Neoplasms/diagnosis , Bone Neoplasms/etiology , Bone Neoplasms/pathology , Cells, Cultured , Chondrosarcoma/diagnosis , Chondrosarcoma/etiology , Chondrosarcoma/pathology , Femur/diagnostic imaging , Femur/pathology , Fibroma/diagnosis , Fibroma/etiology , Fibroma/pathology , Joints/diagnostic imaging , Joints/pathology , Magnetic Resonance Imaging , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Mesenchymal Stem Cells/pathology , Rats , Rats, Nude , Rats, Sprague-Dawley , Rodentia
SELECTION OF CITATIONS
SEARCH DETAIL
...