Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Nucleic Acids Res ; 51(1): 1-16, 2023 01 11.
Article in English | MEDLINE | ID: mdl-35697349

ABSTRACT

Transcriptional reactivation of hTERT is the limiting step in tumorigenesis. While mutations in hTERT promoter present in 19% of cancers are recognized as key drivers of hTERT reactivation, mechanisms by which wildtype hTERT (WT-hTERT) promoter is reactivated, in majority of human cancers, remain unknown. Using primary colorectal cancers (CRC) we identified Tert INTeracting region 2 (T-INT2), the critical chromatin region essential for reactivating WT-hTERT promoter in CRCs. Elevated ß-catenin and JunD level in CRC facilitates chromatin interaction between hTERT promoter and T-INT2 that is necessary to turn on hTERTexpression. Pharmacological screens uncovered salinomycin, which inhibits JunD mediated hTERT-T-INT2 interaction that is required for the formation of a stable transcription complex on the hTERT promoter. Our results showed for the first time how known CRC alterations, such as APC, lead to WT-hTERT promoter reactivation during stepwise-tumorigenesis and provide a new perspective for developing cancer-specific drugs.


Healthy and cancer cells harbor the same DNA sequence, but reactivation of the Human Telomerase Reverse Transcriptase (hTERT) gene is observed only in cancer cells. How does that happen was not known for over three decades of research? This study identifies a specific DNA structure that forms only in cancer cells and brings the necessary molecular machinery into the correct position to activate the hTERT gene. The detailed mechanism of hTERT activation provided in this study will be instrumental in designing cancer cell-specific hTERT inhibitors, especially since all the other ways of inhibiting telomerase failed in the clinic.


Subject(s)
Colorectal Neoplasms , Telomerase , Humans , Carcinogenesis , Chromatin/genetics , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Promoter Regions, Genetic , Telomerase/antagonists & inhibitors , Telomerase/genetics , Transcription, Genetic
2.
Cell Mol Life Sci ; 78(9): 4235-4257, 2021 May.
Article in English | MEDLINE | ID: mdl-33599797

ABSTRACT

Reactivation of telomerase is a major hallmark observed in 90% of all cancers. Yet paradoxically, enhanced telomerase activity does not correlate with telomere length and cancers often possess short telomeres; suggestive of supplementary non-canonical roles that telomerase might play in the development of cancer. Moreover, studies have shown that aberrant expression of shelterin proteins coupled with their release from shortening telomeres can further promote cancer by mechanisms independent of their telomeric role. While targeting telomerase activity appears to be an attractive therapeutic option, this approach has failed in clinical trials due to undesirable cytotoxic effects on stem cells. To circumvent this concern, an alternative strategy could be to target the molecules involved in the non-canonical functions of telomeric proteins. In this review, we will focus on emerging evidence that has demonstrated the non-canonical roles of telomeric proteins and their impact on tumorigenesis. Furthermore, we aim to address current knowledge gaps in telomeric protein functions and propose future research approaches that can be undertaken to achieve this.


Subject(s)
Neoplasms/pathology , Telomere-Binding Proteins/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Dyskeratosis Congenita/genetics , Dyskeratosis Congenita/pathology , Humans , Neoplasms/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Promoter Regions, Genetic , Ribonucleoproteins, Small Nucleolar/genetics , Ribonucleoproteins, Small Nucleolar/metabolism , Telomerase/genetics , Telomerase/metabolism , Telomere/metabolism , Telomere-Binding Proteins/chemistry , rap1 GTP-Binding Proteins/genetics , rap1 GTP-Binding Proteins/metabolism
3.
Cancers (Basel) ; 11(12)2019 Nov 26.
Article in English | MEDLINE | ID: mdl-31769433

ABSTRACT

Although mammography is the gold standard for breast cancer screening, the high rates of false-positive mammograms remain a concern. Thus, there is an unmet clinical need for a non-invasive and reliable test to differentiate between malignant and benign breast lesions in order to avoid subjecting patients with abnormal mammograms to unnecessary follow-up diagnostic procedures. Serum samples from 116 malignant breast lesions and 64 benign breast lesions were comprehensively profiled for 2,083 microRNAs (miRNAs) using next-generation sequencing. Of the 180 samples profiled, three outliers were removed based on the principal component analysis (PCA), and the remaining samples were divided into training (n = 125) and test (n = 52) sets at a 70:30 ratio for further analysis. In the training set, significantly differentially expressed miRNAs (adjusted p < 0.01) were identified after correcting for multiple testing using a false discovery rate. Subsequently, a predictive classification model using an eight-miRNA signature and a Bayesian logistic regression algorithm was developed. Based on the receiver operating characteristic (ROC) curve analysis in the test set, the model could achieve an area under the curve (AUC) of 0.9542. Together, this study demonstrates the potential use of circulating miRNAs as an adjunct test to stratify breast lesions in patients with abnormal screening mammograms.

4.
Breast Cancer Res Treat ; 177(1): 145-153, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31119570

ABSTRACT

PURPOSE: PARP4 has been proposed as a candidate breast cancer susceptibility gene. However, its function and involvement in breast carcinogenesis is unclear. We sought to determine the variant frequency of PARP4 in BRCA-negative women referred for genetic testing from Singapore and to perform functional analyses of PARP4. METHODS: Next-generation sequencing of PARP4 was conducted for 198 BRCA-negative cases from Singapore. Three independent case-control association analyses of PARP4 were performed for (1) our Singaporean cohort, (2) three dbGaP datasets, and (3) cases from TCGA, with controls from the Exome Aggregation Consortium (ExAC). PARP4 knockout cells were generated utilizing the CRISPR-Cas9 approach in MDA-MB-231 (breast cancer) and MCF10A (normal breast) cell lines, and colony formation, cell proliferation, and migration assays carried out. RESULTS: Candidate variants in PARP4 were identified in 5.5% (11/198) of our Singapore cohort. Case-control association studies for our cases and the dbGaP datasets showed no significant association. However, a significant association was observed for PARP4 variants when comparing 988 breast cancer cases from the TCGA provisional data and 53,105 controls from ExAC (ALL) (OR 0.249, 95% CI 0.139-0.414, P = 2.86 × 10-11). PARP4 knockout did not affect the clonogenicity, proliferation rate, and migration of normal breast cells, but appeared to decrease the proliferation rate and clonogenicity of breast cancer cells. CONCLUSIONS: Taken together, our results do not support that PARP4 functions as a cancer susceptibility gene. This study highlights the importance of performing functional analyses for candidate cancer predisposition genes.


Subject(s)
Biomarkers, Tumor , Breast Neoplasms/genetics , Genetic Predisposition to Disease , Nuclear Proteins/genetics , Adult , Aged , Breast Neoplasms/diagnosis , Breast Neoplasms/mortality , Case-Control Studies , Cell Line, Tumor , Cell Proliferation , Computational Biology , Female , Gene Knockdown Techniques , Genetic Association Studies/methods , Genetic Testing , Heterozygote , High-Throughput Nucleotide Sequencing , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Staging , Neoplastic Stem Cells/metabolism , Risk Assessment , Risk Factors , Singapore , Tumor Stem Cell Assay , Young Adult
5.
Oncotarget ; 9(16): 12796-12804, 2018 Feb 27.
Article in English | MEDLINE | ID: mdl-29560110

ABSTRACT

Genome-wide association studies (GWAS) have proven highly successful in identifying single nucleotide polymorphisms (SNPs) associated with breast cancer (BC) risk. The majority of these studies are on European populations, with limited SNP association data in other populations. We genotyped 51 GWAS-identified SNPs in two independent cohorts of Singaporean Chinese. Cohort 1 comprised 1294 BC cases and 885 controls and was used to determine odds ratios (ORs); Cohort 2 had 301 BC cases and 243 controls for deriving polygenic risk scores (PRS). After age-adjustment, 11 SNPs were found to be significantly associated with BC risk. Five SNPs were present in <1% of Cohort 1 and were excluded from further PRS analysis. To assess the cumulative effect of the remaining 46 SNPs on BC risk, we generated three PRS models: Model-1 included 46 SNPs; Model-2 included 11 statistically significant SNPs; and Model-3 included the SNPs in Model-2 but excluded SNPs that were in strong linkage disequilibrium with the others. Across Models-1, -2 and -3, women in the highest PRS quartile had the greatest ORs of 1.894 (95% CI = 1.157-3.100), 2.013 (95% CI = 1.227-3.302) and 1.751 (95% CI = 1.073-2.856) respectively, suggesting a direct correlation between PRS and BC risk. Given the potential of PRS in BC risk stratification, our findings suggest the need to tailor the selection of SNPs to be included in an ethnic-specific PRS model.

6.
Cancer Res ; 77(19): 5428-5437, 2017 10 01.
Article in English | MEDLINE | ID: mdl-28775167

ABSTRACT

It has been estimated that >1,000 genetic loci have yet to be identified for breast cancer risk. Here we report the first study utilizing targeted next-generation sequencing to identify single-nucleotide polymorphisms (SNP) associated with breast cancer risk. Targeted sequencing of 283 genes was performed in 240 women with early-onset breast cancer (≤40 years) or a family history of breast and/or ovarian cancer. Common coding variants with minor allele frequencies (MAF) >1% that were identified were presumed initially to be SNPs, but further database inspections revealed variants had MAF of ≤1% in the general population. Through prioritization and stringent selection criteria, we selected 24 SNPs for further genotyping in 1,516 breast cancer cases and 1,189 noncancer controls. Overall, we identified the JAK2 SNP rs56118985 to be significantly associated with overall breast cancer risk. Subtype analysis performed for patient subgroups defined by ER, PR, and HER2 status suggested additional associations of the NOTCH3 SNP rs200504060 and the HIF1A SNP rs142179458 with breast cancer risk. In silico analysis indicated that coding amino acids encoded at these three SNP sites were conserved evolutionarily and associated with decreased protein stability, suggesting a likely impact on protein function. Our results offer proof of concept for identifying novel cancer risk loci from next-generation sequencing data, with iterative data analysis from targeted, whole-exome, or whole-genome sequencing a wellspring to identify new SNPs associated with cancer risk. Cancer Res; 77(19); 5428-37. ©2017 AACR.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Carcinoma, Ductal, Breast/genetics , Carcinoma, Lobular/genetics , Genetic Loci , Polymorphism, Single Nucleotide/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/metabolism , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/metabolism , Carcinoma, Lobular/pathology , Case-Control Studies , Female , Follow-Up Studies , Genetic Predisposition to Disease , Genotype , High-Throughput Nucleotide Sequencing/methods , Humans , Hypoxia-Inducible Factor 1, alpha Subunit/chemistry , Hypoxia-Inducible Factor 1, alpha Subunit/genetics , Hypoxia-Inducible Factor 1, alpha Subunit/metabolism , Janus Kinase 2/chemistry , Janus Kinase 2/genetics , Janus Kinase 2/metabolism , Middle Aged , Neoplasm Grading , Neoplasm Staging , Prognosis , Protein Conformation , Protein Stability , Receptor, ErbB-2/metabolism , Receptor, Notch3/chemistry , Receptor, Notch3/genetics , Receptor, Notch3/metabolism , Receptors, Estrogen/metabolism , Receptors, Progesterone/metabolism , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...