Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxics ; 10(2)2022 Feb 18.
Article in English | MEDLINE | ID: mdl-35202281

ABSTRACT

Limited monitoring activities to assess data on heavy metal (HM) concentration contribute to worldwide concern for the environmental quality and the degree of toxicants in areas where there are elevated metals concentrations. Hence, this study used in-situ physicochemical parameters to the limited data on HM concentration in SW and GW. The site of the study was Marinduque Island Province in the Philippines, which experienced two mining disasters. Prediction model results showed that the SW models during the dry and wet seasons recorded a mean squared error (MSE) ranging from 6 × 10-7 to 0.070276. The GW models recorded a range from 5 × 10-8 to 0.045373, all of which were approaching the ideal MSE value of 0. Kling-Gupta efficiency values of developed models were all greater than 0.95. The developed neural network-particle swarm optimization (NN-PSO) models for SW and GW were compared to linear and support vector machine (SVM) models and previously published deterministic and artificial intelligence (AI) models. The findings indicated that the developed NN-PSO models are superior to the developed linear and SVM models, up to 1.60 and 1.40 times greater than the best model observed created by linear and SVM models for SW and GW, respectively. The developed models were also on par with previously published deterministic and AI-based models considering their prediction capability. Sensitivity analysis using Olden's connection weights approach showed that pH influenced the concentration of HM significantly. Established on the research findings, it can be stated that the NN-PSO is an effective and practical approach in the prediction of HM concentration in water resources that contributes a solution to the limited HM concentration monitored data.

2.
Article in English | MEDLINE | ID: mdl-35162612

ABSTRACT

This paper investigated the health risks due to metal concentrations in soil and vegetables from the island province in the Philippines and the potential ecological risks. The concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn in vegetables and soil in six municipalities of the province were analyzed using the Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) Perkin Elmer Optima 8000. It was recorded that all metal concentrations in the soil, except for Cd, exceeded the soil quality standard (SQS). The concentration of Fe and Mn was highest among other metals. The Nemerow synthetical pollution index (Pn) in all soil samples was under Class V which means severe pollution level. Likewise, the risk index (RI) of soil ranged from high to very high pollution risk. Most of the metal concentrations in the vegetables analyzed also exceeded the maximum permissible limit (MPL). All health hazard indices (HHIs) were less than 1, which means potential low non-carcinogenic risk to human population by vegetable consumption. However, it was found that concentration of Cr and Ni in vegetables is a potential health hazard having concentrations exceeding the maximum threshold limit. A 75% temporary consumption reduction of bitter melon, eggplant, sweet potato tops, and string beans produced from two municipalities may be helpful in reducing exposure to target metals. Additional studies are needed to confirm this recommendation. Spatial correlation analysis showed that six out of target metals had datasets that were more spatially clustered than would be expected. The recorded data are useful for creation of research direction, and aid in developing strategies for remediation, tools, and programs for improving environmental and vegetable quality monitoring.


Subject(s)
Metals, Heavy , Soil Pollutants , China , Cities , Environmental Monitoring , Humans , Metals, Heavy/analysis , Philippines , Risk Assessment , Soil/chemistry , Soil Pollutants/analysis , Vegetables/chemistry
3.
Front Cardiovasc Med ; 9: 1070378, 2022.
Article in English | MEDLINE | ID: mdl-36712274

ABSTRACT

This report describes a rare case of a global myocardial infarction caused by severe vasospasm of the coronary arteries secondary to the administration of pyridostigmine in a patient with polyarteritis nodosa (PAN). Details about the clinical presentation, the typical electrocardiographic pattern of multivessel disease, the differential diagnoses suspected in the multi-imaging approach, and the treatment of cardiogenic shock are described. The definitive diagnosis of infarction and the histopathological findings compatible with polyarteritis nodosa were made by autopsy.

4.
Toxics ; 9(11)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34822664

ABSTRACT

Water quality monitoring demands the use of spatial interpolation techniques due to on-ground challenges. The implementation of various spatial interpolation methods results in significant variations from the true spatial distribution of water quality in a specific location. The aim of this research is to improve mapping prediction capabilities of spatial interpolation algorithms by using a neural network with the particle swarm optimization (NN-PSO) technique. Hybrid interpolation approaches were evaluated and compared by cross-validation using mean absolute error (MAE) and Pearson's correlation coefficient (R). The governing interpolation techniques for the physicochemical parameters of groundwater (GW) and heavy metal concentrations were the geostatistical approaches combined with NN-PSO. The best methods for physicochemical characteristics and heavy metal concentrations were observed to have the least MAE and R values, ranging from 1.7 to 4.3 times and 1.2 to 5.6 times higher than the interpolation technique without the NN-PSO for the dry and wet season, respectively. The hybrid interpolation methods exhibit an improved performance as compared to the non-hybrid methods. The application of NN-PSO technique to spatial interpolation methods was found to be a promising approach for improving the accuracy of spatial maps for GW quality.

5.
Toxics ; 9(4)2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33915720

ABSTRACT

This paper elaborates on the potential toxicants detected in inland water, freshwater crustaceans, and tilapia in an island that experienced mining disasters in 1993 and 1996. Specimen samples were collected in six municipalities of the island province in 2019 and presence of metals (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) were analyzed using Inductively Coupled Plasma-Optical Emission Spectrometer (ICP-OES). Potential ecological risks analysis followed the Hakanson approach. Canonical correspondence analysis PAST Version 3.22, IBM SPSS 25.0, and Pearson correlation were employed for statistical analysis, and GIS Pro 2.5 for mapping of sampling locations and spatial distribution. Results showed that Mn and Zn concentration was highest in surface water (SW) and groundwater (GW), respectively. All metal concentration values exceeded the maximum permissible limit by regulatory international organizations. Elevated concentration of Cr, Cu, Fe, Mn, and Zn was detected in both crustaceans and tilapia. The calculated health hazard indices were greater than one, which means potential high adverse effects on public health when ingested. The municipality of Sta. Cruz and Torrijos recorded higher potential ecological risk among the six municipalities. Results of the correlation analysis suggested that metals in SW and GW have a similar origin, mutual dependence, and identical behavior during transport.

SELECTION OF CITATIONS
SEARCH DETAIL
...