Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 9: 311-320, 2018.
Article in English | MEDLINE | ID: mdl-29441274

ABSTRACT

The creation of bioactive substrates requires an appropriate interface molecular environment control and adequate biological species recognition with minimum nonspecific attachment. Herein, a straightforward approach utilizing chemical lift-off lithography to create a diluted self-assembled monolayer matrix for anchoring diverse biological probes is introduced. The strategy encompasses convenient operation, well-tunable pattern feature and size, large-area fabrication, high resolution and fidelity control, and the ability to functionalize versatile bioarrays. With the interface-contact-induced reaction, a preformed alkanethiol self-assembled monolayer on a Au surface is ruptured and a unique defect-rich diluted matrix is created. This post lift-off region is found to be suitable for insertion of a variety of biological probes, which allows for the creation of different types of bioactive substrates. Depending on the modifications to the experimental conditions, the processes of direct probe insertion, molecular structure change-required recognition, and bulky biological species binding are all accomplished with minimum nonspecific adhesion. Furthermore, multiplexed arrays via the integration of microfluidics are also achieved, which enables diverse applications of as-prepared substrates. By embracing the properties of well-tunable pattern feature dimension and geometry, great local molecular environment control, and wafer-scale fabrication characteristics, this chemical lift-off process has advanced conventional bioactive substrate fabrication into a more convenient route.

2.
Nanomaterials (Basel) ; 8(2)2018 Jan 27.
Article in English | MEDLINE | ID: mdl-29382044

ABSTRACT

Nanoparticle alignment on the substrate attracts considerable attention due to its wide application in different fields, such as mechanical control, small size electronics, bio/chemical sensing, molecular manipulation, and energy harvesting. However, precise nanoparticle positioning and deposition control with high fidelity are still challenging. Herein, a straightforward strategy for high quality nanoparticle-alignment by chemical lift-off lithography (CLL) is demonstrated. This technique creates high resolution self-assembled monolayer (SAM) chemical patterns on gold substrates, enabling nanoparticle-selective deposition and precise alignment. The fabricated nanoparticle arrangement geometries and dimensions are well-controllable in a large area. With proper nanoparticle surface functionality control and adequate substrate molecular manipulation, well-defined nanoparticle arrays with single-particle-wide alignment resolution are achieved.

SELECTION OF CITATIONS
SEARCH DETAIL
...