Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Toxicol Chem ; 41(3): 715-725, 2022 03.
Article in English | MEDLINE | ID: mdl-35199389

ABSTRACT

Although many phthalates are endocrine-disrupting chemicals that are associated with adverse birth outcomes, the relationship between maternal phthalate exposure and birth outcomes is not yet conclusive. The objective of the present study was to investigate the association between prenatal exposure to phthalates in human maternal and cord blood and birth outcomes of the infants. Sixty-five mother-infant pairs were recruited in Taipei City and New Taipei City, and birth outcomes of the infants were recorded. Twelve phthalate metabolites were measured in maternal and cord blood samples. The mean of mono-ethyl phthalate, mono-isobutyl phthalate (MiBP), mono-n-butyl phthalate (MnBP), and mono-(2-ethylhexyl) phthalate (MEHP) was relatively higher than that of the other metabolites in both maternal and infant blood. There was a significant difference (p < 0.05) for mono-methyl phthalate (MMP) and MnBP between the maternal blood and cord blood of male infants. Mono-benzyl phthalate (MBzP), MMP, MiBP, and ∑di-2-ethylhexyl phthalate (∑DEHP) in maternal blood were inversely correlated with the anogenital index (AGI) of male infants, with a p value between 0.011 and 0.033. Mono-n-octyl phthalate, MMP, MiBP, MnBP, and MBzP were positively correlated with the AGI of female infants, with a p value between 0.001 and 0.034. Cord blood levels of MnBP, mono-(2-ethyl-5-oxohexyl)-phthalate, MEHP, and ∑DEHP were found to be inversely associated with head circumference in all the infants, adjusted for gestational age. Phthalate monoesters are potentially estrogenic and antiandrogenic chemicals. Longitudinal follow-up of the present study population could help clarify the long-term impact of phthalates on growth and the health effects of background exposure levels. Environ Toxicol Chem 2022;41:715-725. © 2022 SETAC.


Subject(s)
Environmental Pollutants , Phthalic Acids , Prenatal Exposure Delayed Effects , Female , Humans , Male , Pregnancy , Environmental Exposure , Environmental Pollutants/adverse effects , Environmental Pollutants/metabolism , Fetal Blood/metabolism , Maternal Exposure/adverse effects
2.
Regul Toxicol Pharmacol ; 128: 105097, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34902532

ABSTRACT

In forensic toxicology, a marker of street heroin use is urgent especially in the absence of urinary 6-monoacetylmorphine. ATM4G, the Glucuronide of Acetylated product of Thebaine compound 4 Metabolite (ATM4), arising from byproducts of street heroin synthesis has been considered as a useful marker in some European studies. However, whether ATM4G is a universal marker particularly in Southeast Asia due to 'street' heroin with high purity, it's still unclear. To investigate putative markers for different regions, ATM4G and other metabolites including the Acetylated product of Thebaine compound 3 Metabolite (ATM3) and thebaol, also originated from thebaine were detected in 552 urine samples from heroin users in Taiwan. Results were compared with that from samples collected in the UK and Germany. Only a sulfo-conjugate of ATM4, ATM4S, was detected in 28 Taiwanese users using a sensitive MS3 method whilst out of 351 samples from the UK and Germany, ATM4G was present in 91. Thebaol-glucuronide was first time detected in 118. No markers were detected in urine following herbal medicine use or poppy seed ingestion. The presence of ATM4S/ATM4G might be affected by ethnicities and heroin supplied in regions. Thebaol-glucuronide is another putative marker with ATM4G and ATM4S for street heroin use.


Subject(s)
Forensic Toxicology/methods , Glucuronides/urine , Heroin/metabolism , Substance Abuse Detection/methods , Asia, Southeastern , Europe , Gas Chromatography-Mass Spectrometry/methods , Heroin/urine , Humans , Morphine Derivatives/urine , Thebaine/urine
SELECTION OF CITATIONS
SEARCH DETAIL
...