Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Pharmacol Exp Ther ; 365(2): 281-290, 2018 05.
Article in English | MEDLINE | ID: mdl-29472517

ABSTRACT

To determine the effects of nordihydroguaiaretic acid (NDGA) on metabolic and molecular changes in response to feeding a typical American fast food or Western diet, mice were fed an American lifestyle-induced obesity syndrome (ALIOS) diet and subjected to metabolic analysis. Male C57BL/6J mice were randomly assigned to the ALIOS diet, the ALIOS diet supplemented with NDGA (NDGA+ALIOS), or a control diet and were maintained on the specific diet for 8 weeks. Mice fed the ALIOS diet showed increased body, liver, and epididymal fat pad weight as well as increased plasma alanine transaminase (ALT) and aspartate aminotransferase (AST) levels (a measure of liver injury) and liver triglyceride content. Coadministration of NDGA normalized body and epididymal fat pad weight, ALT and AST levels, and liver triglycerides. NDGA treatment also improved insulin sensitivity but not glucose intolerance in mice fed the ALIOS diet. In mice fed the NDGA+ALIOS diet, NDGA supplementation induced peroxisome proliferator-activated receptor α (PPARα; the master regulator of fatty acid oxidation) and mRNA levels of carnitine palmitoyltransferases Cpt1c and Cpt2, key genes involved in fatty acid oxidation, compared with the ALIOS diet. NDGA significantly reduced liver endoplasmic reticulum (ER) stress response C/EBP homologous protein, compared with chow or the ALIOS diet, and also ameliorated ALIOS diet-induced elevation of apoptosis signaling protein, caspase 3. Likewise, NDGA downregulated the ALIOS diet-induced mRNA levels of Pparg, fatty acid synthase Fasn, and diacylglycerol acyltransferase Dgat2 NDGA treatment of ALIOS-fed mice upregulated the hepatic expression of antioxidant enzymes, glutathione peroxidase 4, and peroxiredoxin 3 proteins. In conclusion, we provide evidence that NDGA improves metabolic dysregulation by simultaneously modulating the PPARα transcription factor and key genes involved in fatty acid oxidation, key antioxidant and lipogenic enzymes, and apoptosis and ER stress signaling pathways.


Subject(s)
Diet, Western/adverse effects , Larrea/chemistry , Life Style , Masoprocol/pharmacology , Obesity/metabolism , Obesity/prevention & control , Adipogenesis/drug effects , Animals , Apoptosis/drug effects , Endoplasmic Reticulum Stress/drug effects , Fatty Acids/metabolism , Lipogenesis/drug effects , Lipogenesis/genetics , Liver/drug effects , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Obesity/chemically induced , Obesity/pathology , Oxidation-Reduction/drug effects , PPAR alpha/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Signal Transduction/drug effects , Up-Regulation/drug effects
2.
Part Fibre Toxicol ; 10: 34, 2013 Aug 01.
Article in English | MEDLINE | ID: mdl-23902943

ABSTRACT

BACKGROUND: Urban particulate matter (PM) has been epidemiologically correlated with multiple cardiopulmonary morbidities and mortalities, in sensitive populations. Children exposed to PM are more likely to develop respiratory infections and asthma. Although PM originates from natural and anthropogenic sources, vehicle exhaust rich in polycyclic aromatic hydrocarbons (PAH) can be a dominant contributor to the PM2.5 and PM0.1 fractions and has been implicated in the generation of reactive oxygen species (ROS). OBJECTIVES: Current studies of ambient PM are confounded by the variable nature of PM, so we utilized a previously characterized ethylene-combusted premixed flame particles (PFP) with consistent and reproducible physiochemical properties and 1) measured the oxidative potential of PFP compared to ambient PM, 2) determined the ability of PFPs to generate oxidative stress and activate the transcription factor using in vitro and ex vivo models, and 3) we correlated these responses with antioxidant enzyme expression in vivo. METHODS: We compared oxidative stress response (HMOX1) and antioxidant enzyme (SOD1, SOD2, CAT, and PRDX6) expression in vivo by performing a time-course study in 7-day old neonatal and young adult rats exposed to a single 6-hour exposure to 22.4 µg/m3 PFPs. RESULTS: We showed that PFP is a potent ROS generator that induces oxidative stress and activates Nrf2. Induction of the oxidative stress responsive enzyme HMOX1 in vitro was mediated through Nrf2 activation and was variably upregulated in both ages. Furthermore, antioxidant enzyme expression had age and lung compartment variations post exposure. Of particular interest was SOD1, which had mRNA and protein upregulation in adult parenchyma, but lacked a similar response in neonates. CONCLUSIONS: We conclude that PFPs are effective ROS generators, comparable to urban ambient PM2.5, that induce oxidative stress in neonatal and adult rat lungs. PFPs upregulate a select set of antioxidant enzymes in young adult animals, that are unaffected in neonates. We conclude that the inability of neonatal animals to upregulate the antioxidant response may, in part, explain enhanced their susceptibility to ultrafine particles, such as PFP.


Subject(s)
Antioxidants/metabolism , Lung/drug effects , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Reactive Oxygen Species/metabolism , Soot/toxicity , Age Factors , Animals , Animals, Newborn , Catalase/genetics , Catalase/metabolism , Dose-Response Relationship, Drug , Gene Expression Regulation, Enzymologic/drug effects , Genes, Reporter , Heme Oxygenase (Decyclizing)/genetics , Heme Oxygenase (Decyclizing)/metabolism , Humans , Inhalation Exposure , Lung/metabolism , Male , NF-E2-Related Factor 2/genetics , Particle Size , Peroxiredoxin VI/genetics , Peroxiredoxin VI/metabolism , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Superoxide Dismutase-1 , Time Factors , Transfection , U937 Cells
3.
Am J Physiol Lung Cell Mol Physiol ; 304(10): L665-77, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23502512

ABSTRACT

Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAH) and can be a dominant contributor to ultrafine urban particulate matter (PM). Exposure to ultrafine PM is correlated with respiratory infections and asthmatic symptoms in young children. The lung undergoes substantial growth, alveolarization, and cellular maturation within the first years of life, which may be impacted by environmental pollutants such as PM. PAHs in PM can serve as ligands for the aryl hydrocarbon receptor (AhR) that induces expression of certain isozymes in the cytochrome P-450 superfamily, such as CYP1A1 and CYP1B1, localized in specific lung cell types. Although AhR activation and induction has been widely studied, its context within PM exposure and impact on the developing lung is poorly understood. In response, we have developed a replicable ultrafine premixed flame particle (PFP) generating system and used in vitro and in vivo models to define PM effects on AhR activation in the developing lung. We exposed 7-day neonatal and adult rats to a single 6-h PFP exposure and determined that PFPs cause significant parenchymal toxicity in neonates. PFPs contain weak AhR agonists that upregulate AhR-xenobiotic response element activity and expression and are capable inducers of CYP1A1 and CYP1B1 expression in both ages with different spatial and temporal patterns. Neonatal CYP1A1 expression was muted and delayed compared with adults, possibly because of differences in the enzyme maturation. We conclude that the inability of neonates to sufficiently adapt in response to PFP exposure may, in part, explain their susceptibility to PFP and urban ultrafine PM.


Subject(s)
Cytochrome P-450 Enzyme System/biosynthesis , Lung/drug effects , Lung/enzymology , Particulate Matter/pharmacology , Silicones/pharmacology , Animals , Animals, Newborn , Aryl Hydrocarbon Hydroxylases/biosynthesis , Cells, Cultured , Cytochrome P-450 CYP1A1/biosynthesis , Cytochrome P-450 CYP1B1 , Enzyme Induction , Humans , Lung/metabolism , Male , Rats , Rats, Sprague-Dawley , Receptors, Aryl Hydrocarbon/metabolism , U937 Cells , Up-Regulation/drug effects
4.
Am J Respir Cell Mol Biol ; 48(1): 114-24, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23065132

ABSTRACT

Vehicle exhaust is rich in polycyclic aromatic hydrocarbons (PAHs) and is a dominant contributor to urban particulate pollution (PM). Exposure to PM is linked to respiratory and cardiovascular morbidity and mortality in susceptible populations, such as children. PM can contribute to the development and exacerbation of asthma, and this is thought to occur because of the presence of electrophiles in PM or through electrophile generation via the metabolism of PAHs. Glutathione (GSH), an abundant intracellular antioxidant, confers cytoprotection through conjugation of electrophiles and reduction of reactive oxygen species. GSH-dependent phase II detoxifying enzymes glutathione peroxidase and glutathione S-transferase facilitate metabolism and conjugation, respectively. Ambient particulates are highly variable in composition, which complicates systematic study. In response, we have developed a replicable ultrafine premixed flame particle (PFP)-generating system for in vivo studies. To determine particle effects in the developing lung, 7-day-old neonatal and adult rats inhaled 22 µg/m(3) PFP during a single 6-hour exposure. Pulmonary GSH and related phase II detoxifying gene and protein expression were evaluated 2, 24, and 48 hours after exposure. Neonates exhibited significant depletion of GSH despite higher initial baseline levels of GSH. Furthermore, we observed attenuated induction of phase II enzymes (glutamate cysteine ligase, glutathione reductase, glutathione S-transferase, and glutathione peroxidase) in neonates compared with adult rats. We conclude that developing neonates have a limited ability to deviate from their normal developmental pattern that precludes adequate adaptation to environmental pollutants, which results in enhanced cytotoxicity from inhaled PM.


Subject(s)
Antioxidants/metabolism , Glutathione/metabolism , Lung/drug effects , Lung/metabolism , Particulate Matter/toxicity , Administration, Inhalation , Age Factors , Animals , Animals, Newborn , Gene Expression Regulation, Developmental/drug effects , Gene Expression Regulation, Enzymologic/drug effects , Glutamate-Cysteine Ligase/genetics , Glutamate-Cysteine Ligase/metabolism , Glutathione Disulfide/metabolism , Glutathione Peroxidase/genetics , Glutathione Peroxidase/metabolism , Glutathione Reductase/genetics , Glutathione Reductase/metabolism , Glutathione Transferase/genetics , Glutathione Transferase/metabolism , Humans , Lung/growth & development , Male , Oxidative Stress/drug effects , Particulate Matter/administration & dosage , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats , Rats, Sprague-Dawley , Vehicle Emissions/toxicity , Glutathione Peroxidase GPX1
5.
Toxicol Sci ; 124(2): 472-86, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21914721

ABSTRACT

Over a quarter of the U.S. population is exposed to harmful levels of airborne particulate matter (PM) pollution, which has been linked to development and exacerbation of respiratory diseases leading to morbidity and mortality, especially in susceptible populations. Young children are especially susceptible to PM and can experience altered anatomic, physiologic, and biological responses. Current studies of ambient PM are confounded by the complex mixture of soot, metals, allergens, and organics present in the complex mixture as well as seasonal and temporal variance. We have developed a laboratory-based PM devoid of metals and allergens that can be replicated to study health effects of specific PM components in animal models. We exposed 7-day-old postnatal and adult rats to a single 6-h exposure of fuel-rich ultrafine premixed flame particles (PFPs) or filtered air. These particles are high in polycyclic aromatic hydrocarbons content. Pulmonary cytotoxicity, gene, and protein expression were evaluated at 2 and 24 h postexposure. Neonates were more susceptible to PFP, exhibiting increased lactate dehydrogenase activity in bronchoalveolar lavage fluid and ethidium homodimer-1 cellular staining in the lung in situ as an index of cytotoxicity. Basal gene expression between neonates and adults differed for a significant number of antioxidant, oxidative stress, and proliferation genes and was further altered by PFP exposure. PFP diminishes proliferation marker PCNA gene and protein expression in neonates but not adults. We conclude that neonates have an impaired ability to respond to environmental exposures that increases lung cytotoxicity and results in enhanced susceptibility to PFP, which may lead to abnormal airway growth.


Subject(s)
Air Pollutants/toxicity , Fires , Inhalation Exposure/adverse effects , Lung/drug effects , Soot/toxicity , Air Pollutants/chemistry , Animals , Animals, Newborn , Antioxidants/metabolism , Cell Survival/drug effects , Cell Survival/genetics , Gene Expression/drug effects , Gene Expression Profiling , Lung/growth & development , Lung/metabolism , Lung/pathology , Male , Microscopy, Electron, Transmission , Oxidative Stress/drug effects , Oxidative Stress/genetics , Particle Size , Proliferating Cell Nuclear Antigen/genetics , Rats , Rats, Sprague-Dawley , Soot/chemistry , Surface Properties
6.
Inhal Toxicol ; 22 Suppl 2: 70-83, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20961279

ABSTRACT

Current studies of particulate matter (PM) are confounded by the fact that PM is a complex mixture of primary (crustal material, soot, metals) and secondary (nitrates, sulfates, and organics formed in the atmosphere) compounds with considerable variance in composition by sources and location. We have developed a laboratory-based PM that is replicable, does not contain dust or metals and that can be used to study specific health effects of PM composition in animal models. We exposed both neonatal (7 days of age) and adult rats to a single 6-h exposure of laboratory generated fine diffusion flame particles (DFP; 170 µg/m(3)), or filtered air. Pulmonary gene and protein expression as well as indicators of cytotoxicity were evaluated 24 h after exposure. Although DFP exposure did not alter airway epithelial cell composition in either neonates or adults, increased lactate dehydrogenase activity was found in the bronchoalveolar lavage fluid of neonates indicating an age-specific increase in susceptibility. In adults, 16 genes were differentially expressed as a result of DFP exposure whereas only 6 genes were altered in the airways of neonates. Glutamate cysteine ligase protein was increased in abundance in both DFP exposed neonates and adults indicating an initiation of antioxidant responses involving the synthesis of glutathione. DFP significantly decreased catalase gene expression in adult airways, although catalase protein expression was increased by DFP in both neonates and adults. We conclude that key airway antioxidant enzymes undergo changes in expression in response to a moderate PM exposure that does not cause frank epithelial injury and that neonates have a different response pattern than adults.


Subject(s)
Antioxidants/metabolism , Inhalation , Lung/pathology , Particulate Matter/toxicity , Respiratory System/pathology , Soot/toxicity , Administration, Inhalation , Age Factors , Animals , Animals, Newborn , Bronchoalveolar Lavage Fluid , Catalase/metabolism , Gene Expression , Glutamate-Cysteine Ligase/metabolism , Male , Particle Size , Rats , Rats, Sprague-Dawley , Respiratory System/metabolism
7.
J Appl Physiol (1985) ; 109(4): 1115-24, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20634362

ABSTRACT

Increasing numbers of epidemiologic studies associate air pollution exposure in children with decreased lung function development. The objective of this study was to examine the effects of exposure to combustion-generated fine [230 and 212 nm number mean aerodynamic particle diameter (NMAD)] to ultrafine (73 nm NMAD) particles differing in elemental (EC) and organic (OC) carbon content on postnatal airway development in rats. Neonatal Sprague-Dawley rats were exposed from postnatal day 7 through 25, and lung function and airway architecture were evaluated 81 days of age. In a separate group of rats, cell proliferation was examined after a single particle exposure at 7 days of age. Early life exposure to 73 nm high OC/EC particles altered distal airway architecture and resulted in subtle changes in lung mechanics. Early life exposure to 212 nm high OC/EC particles did not alter lung architecture but did alter lung mechanics in a manner suggestive of central airway changes. In contrast, early life exposure to 230 nm low OC/EC particles did not alter lung architecture or mechanics. A single 6-h exposure to 73 nm high OC/EC particle decreased airway cell proliferation, whereas 212 nm high OC/EC particles increased it and 230 nm low OC/EC particles did not. The early life exposure to ultrafine, high OC/EC particles results in persistent alterations in distal airway architecture that is characterized by an initial decrease in airway cell proliferation.


Subject(s)
Carbon/toxicity , Lung/drug effects , Particulate Matter/toxicity , Age Factors , Animals , Animals, Newborn , Bronchial Provocation Tests , Bronchoconstriction/drug effects , Cell Proliferation/drug effects , Immunohistochemistry , Inhalation Exposure , Lung/diagnostic imaging , Lung/growth & development , Lung/metabolism , Particle Size , Proliferating Cell Nuclear Antigen/metabolism , Rats , Rats, Sprague-Dawley , Respiratory Mechanics/drug effects , X-Ray Microtomography
8.
Toxicol Sci ; 116(1): 313-22, 2010 Jul.
Article in English | MEDLINE | ID: mdl-20403968

ABSTRACT

Asthma is a leading cause of morbidity in children. Risk factors include chronic exposure to allergens and air pollution. While chronically activated mast cells contribute to the pathophysiology of asthma in part through their proteases such as chymase and tryptase, previous studies of airway mast cell abundance and distribution in asthmatics have been inconsistent. To determine whether repeated episodic exposures to environmental pollutants during postnatal lung development alter airway mast cell abundance and distribution, we exposed infant rhesus monkeys to a known human allergen, house dust mite antigen (HDMA), and/or a known environmental pollutant, ozone (O(3)), and quantitatively compared the abundance of tryptase- or chymase-positive mast cells in three airway levels. Mast cells are resident in multiple compartments of the airway wall in infant rhesus monkeys raised from birth in filtered air. Tryptase- and chymase-positive cells were most abundant in trachea and least in terminal bronchioles. The majority of tryptase-positive and almost all chymase-positive cells were in extracellular matrix and smooth muscle bundles. Chronic exposure to HDMA elevated the abundance of both tryptase- and chymase-positive cells in the trachea and intrapulmonary bronchi. Neither exposure to O(3) nor HDMA + O(3) increased mast cell accumulations in the airway wall. We conclude that during postnatal airway development (1) mast cells are a resident airway cell population even in the absence of toxic air contaminants; (2) aeroallergen exposure alters large airway mast cell distribution and abundance, increasing chymase-positive mast cells; and (3) this response is attenuated by exposure to oxidant air pollutants.


Subject(s)
Hypersensitivity/pathology , Mast Cells/pathology , Trachea/pathology , Animals , Child , Humans , Immunohistochemistry , Macaca mulatta
9.
Invest Ophthalmol Vis Sci ; 47(12): 5495-504, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17122141

ABSTRACT

PURPOSE: To assess the relationships of drusen, pigment, and focally increased autofluorescence (FIAF) and the reticular pattern of hypoautofluorescence, to distinguish the combined photographic and AF characteristics of early, atrophic, and high-risk fellow eyes in AMD. METHODS: In a retrospective interinstitutional clinical study, AF and color photograph pairs of 221 eyes were examined: 166 eyes of 83 patients with bilateral large, soft drusen, with and without geographic atrophy (GA), and 55 fellow eyes of 55 patients with unilateral choroidal neovascularization (CNV). Forty-two eyes (one eye from each of 42 patients with early or atrophic AMD) were divided into four groups: 14 with drusen only, 9 with drusen and pigment abnormalities, 11 fellow eyes of patients with unilateral GA, and 8 eyes of patients with bilateral GA (acronyms for the groups: D-D, D-Pig, D-GA and GA-GA, respectively). The 55 fellow eyes of patients with CNV were divided into three groups: 19 eyes with no FIAF (CNV-0), 16 with FIAF without reticular AF (CNV-1), and 20 eyes with reticular AF and/or pseudodrusen (CNV-R). Image pairs of eyes with FIAF were registered, and drusen, pigment, and FIAF were segmented using automated background leveling and thresholding. All 221 eyes were surveyed for reticular AF and reticular pseudodrusen. The main outcome measures were (1) the fraction and relative probability of FIAF colocalizing with drusen and pigment and (2) the presence or absence of reticular AF and reticular pseudodrusen. RESULTS: The mean fractions of FIAF that colocalized with large drusen were: D-D group, 0.46 +/- 0.21; D-Pig group, 0.42 +/- 0.29; D-GA group, 0.13 +/- 0.09; and GA-GA group, 0.11 +/- 0.12. Comparisons between groups showed significant differences when comparing either the D-D group or the D-Pig group with either the D-GA group or the GA-GA group (P between 0.0001 and 0.015), whereas other comparisons were nonsignificant (Mann-Whitney rank sum test). The mean probabilities of FIAF colocalizing with large drusen relative to chance (1.0) were: D-D group, 4.7 +/- 2.5; D-Pig group, 4.3 +/- 2.3; D-GA group, 1.4 +/- 0.8; and GA-GA group, 1.8 +/- 1.3, with similar significant differences as for the colocalization fractions. The mean probability of FIAF colocalizing with small to intermediate drusen in the D-D group was 1.5 +/- 1.3, which was not significantly different from chance. In the D-Pig group, the median probability of FIAF colocalizing with pigment abnormalities was 10.0 (range, 1.1-51.0). The AF patterns in 15 of 19 eyes in the CNV-0 group were normal; the remainder had nonreticular hypoautofluorescence only. In the CNV-1 group, the relations of FIAF with drusen and pigment were similar to those in the early AMD groups. CNV-R comprised 20 of 55 eyes in the CNV group, but reticular autofluorescence and/or pseudodrusen were found in only 14 of 166 eyes of the early and atrophic groups. Of the 34 total eyes with reticular AF or pseudodrusen, 28 had both, 4 had reticular AF only, and 2 had reticular pseudodrusen only. CONCLUSIONS: There are clear relationships between AF patterns and clinical AMD status. In early AMD, FIAF's colocalization with large, soft drusen and hyperpigmentation is several times greater than chance, suggesting linked disease processes. In advanced atrophic AMD, FIAF is found mostly adjacent to drusen and GA, suggesting that dispersal of drusen-associated lipofuscin is a marker of atrophic disease progression. In the neovascular case, a large group of fellow eyes have no FIAF abnormalities, suggesting that lipofuscin is not a major determinant of CNV. However, reticular hypoautofluorescence, consistent with widespread inflammatory damage to the RPE, appears to be a highly sensitive imaging marker for the disease that determines reticular pseudodrusen and is strongly associated with CNV.


Subject(s)
Choroidal Neovascularization/diagnosis , Macular Degeneration/diagnosis , Retina/pathology , Retinal Drusen/diagnosis , Atrophy , Diagnostic Techniques, Ophthalmological , Disease Progression , Fluorescence , Humans , Phenotype , Retrospective Studies
10.
Arch Ophthalmol ; 123(2): 200-6, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15710816

ABSTRACT

BACKGROUND: Age-related macular degeneration (ARMD) is the most prevalent cause of visual loss in patients older than 60 years in the United States. Observation of drusen is the hallmark finding in the clinical evaluation of ARMD. OBJECTIVES: To segment and quantify drusen found in patients with ARMD using image analysis and to compare the efficacy of image analysis segmentation with that of stereoscopic manual grading of drusen. DESIGN: Retrospective study. SETTING: University referral center.Patients Photographs were randomly selected from an available database of patients with known ARMD in the ongoing Columbia University Macular Genetics Study. All patients were white and older than 60 years. INTERVENTIONS: Twenty images from 17 patients were selected as representative of common manifestations of drusen. Image preprocessing included automated color balancing and, where necessary, manual segmentation of confounding lesions such as geographic atrophy (3 images). The operator then chose among 3 automated processing options suggested by predominant drusen type. Automated processing consisted of elimination of background variability by a mathematical model and subsequent histogram-based threshold selection. A retinal specialist using a graphic tablet while viewing stereo pairs constructed digital drusen drawings for each image. MAIN OUTCOME MEASURES: The sensitivity and specificity of drusen segmentation using the automated method with respect to manual stereoscopic drusen drawings were calculated on a rigorous pixel-by-pixel basis. RESULTS: The median sensitivity and specificity of automated segmentation were 70% and 81%, respectively. After preprocessing and option choice, reproducibility of automated drusen segmentation was necessarily 100%. CONCLUSIONS: Automated drusen segmentation can be reliably performed on digital fundus photographs and result in successful quantification of drusen in a more precise manner than is traditionally possible with manual stereoscopic grading of drusen. With only minor preprocessing requirements, this automated detection technique may dramatically improve our ability to monitor drusen in ARMD.


Subject(s)
Diagnostic Techniques, Ophthalmological , Image Processing, Computer-Assisted/methods , Macular Degeneration/diagnosis , Retinal Drusen/diagnosis , Humans , Middle Aged , Photography/methods , Reproducibility of Results , Retrospective Studies , Sensitivity and Specificity , Sensory Thresholds
11.
Biomed Eng Online ; 2: 10, 2003 Apr 18.
Article in English | MEDLINE | ID: mdl-12740042

ABSTRACT

BACKGROUND: The hallmarks of age-related macular degeneration, the leading cause of blindness in the developed world, are the subretinal deposits known as drusen. Drusen identification and measurement play a key role in clinical studies of this disease. Current manual methods of drusen measurement are laborious and subjective. Our purpose was to expedite clinical research with an accurate, reliable digital method. METHODS: An interactive semi-automated procedure was developed to level the macular background reflectance for the purpose of morphometric analysis of drusen. 12 color fundus photographs of patients with age-related macular degeneration and drusen were analyzed. After digitizing the photographs, the underlying background pattern in the green channel was leveled by an algorithm based on the elliptically concentric geometry of the reflectance in the normal macula: the gray scale values of all structures within defined elliptical boundaries were raised sequentially until a uniform background was obtained. Segmentation of drusen and area measurements in the central and middle subfields (1000 microm and 3000 microm diameters) were performed by uniform thresholds. Two observers using this interactive semi-automated software measured each image digitally. The mean digital measurements were compared to independent stereo fundus gradings by two expert graders (stereo Grader 1 estimated the drusen percentage in each of the 24 regions as falling into one of four standard broad ranges; stereo Grader 2 estimated drusen percentages in 1% to 5% intervals). RESULTS: The mean digital area measurements had a median standard deviation of 1.9%. The mean digital area measurements agreed with stereo Grader 1 in 22/24 cases. The 95% limits of agreement between the mean digital area measurements and the more precise stereo gradings of Grader 2 were -6.4 % to +6.8 % in the central subfield and -6.0 % to +4.5 % in the middle subfield. The mean absolute differences between the digital and stereo gradings 2 were 2.8 +/- 3.4% in the central subfield and 2.2 +/- 2.7% in the middle subfield. CONCLUSIONS: Semi-automated, supervised drusen measurements may be done reproducibly and accurately with adaptations of commercial software. This technique for macular image analysis has potential for use in clinical research.


Subject(s)
Fluorescein Angiography/methods , Image Enhancement/methods , Retinal Drusen/classification , Retinal Drusen/diagnosis , Humans , Macula Lutea/pathology , Macular Degeneration/complications , Reproducibility of Results , Retinal Drusen/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...