Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Mol Neurosci ; 16: 1168948, 2023.
Article in English | MEDLINE | ID: mdl-37122628

ABSTRACT

Background: Autophagy is a conserved physiological intracellular mechanism responsible for the degradation and recycling of cytoplasmic constituents (e.g., damaged organelles, and protein aggregates) to maintain cell homeostasis. Aberrant autophagy has been observed in neurodegenerative diseases, including Alzheimer's Disease (AD), Parkinson's Disease (PD), Amyotrophic Lateral Sclerosis (ALS), and Huntington's Disease (HD), and recently aberrant autophagy has been associated with mood disorders, such as depression. Several in vitro methods have been developed to study the complex and tightly regulated mechanisms of autophagy. In vitro methods applied to autophagy research are used to identify molecular key players involved in dysfunctional autophagy and to screen autophagy regulators with therapeutic applications in neurological diseases and mood disorders. Therefore, the aims of this narrative review are (1) to compile information on the cell-based methods used in autophagy research, (2) to discuss their application, and (3) to create a catalog of traditional and novel in vitro methods applied in neurodegenerative diseases and depression. Methods: Pubmed and Google Scholar were used to retrieve relevant in vitro studies on autophagy mechanisms in neurological diseases and depression using a combination of search terms per mechanism and disease (e.g., "macroautophagy" and "Alzheimer's disease"). A total of 37 studies were included (14 in PD, 8 in AD, 5 in ALS, 5 in %, and 5 in depression). Results: A repertoire of traditional and novel approaches and techniques was compiled and discussed. The methods used in autophagy research focused on the mechanisms of macroautophagy, microautophagy, and chaperone-mediated autophagy. The in vitro tools presented in this review can be applied to explore pathophysiological mechanisms at a molecular level and to screen for potential therapeutic agents and their mechanism of action, which can be of great importance to understanding disease biology and potential therapeutic options in the context of neurodegenerative disorders and depression. Conclusion: This is the first review to compile, discuss, and provide a catalog of traditional and novel in vitro models applied to neurodegenerative disorders and depression.

2.
Front Cell Dev Biol ; 10: 982549, 2022.
Article in English | MEDLINE | ID: mdl-36187492

ABSTRACT

The process of neurogenesis in the brain, including cell proliferation, differentiation, survival, and maturation, results in the formation of new functional neurons. During embryonic development, neurogenesis is crucial to produce neurons to establish the nervous system, but the process persists in certain brain regions during adulthood. In adult neurogenesis, the production of new neurons in the hippocampus is accomplished via the division of neural stem cells. Neurogenesis is regulated by multiple factors, including gene expression at a temporal scale and post-transcriptional modifications. RNA-binding Proteins (RBPs) are known as proteins that bind to either double- or single-stranded RNA in cells and form ribonucleoprotein complexes. The involvement of RBPs in neurogenesis is crucial for modulating gene expression changes and posttranscriptional processes. Since neurogenesis affects learning and memory, RBPs are closely associated with cognitive functions and emotions. However, the pathways of each RBP in adult neurogenesis remain elusive and not clear. In this review, we specifically summarize the involvement of several RBPs in adult neurogenesis, including CPEB3, FXR2, FMRP, HuR, HuD, Lin28, Msi1, Sam68, Stau1, Smaug2, and SOX2. To understand the role of these RBPs in neurogenesis, including cell proliferation, differentiation, survival, and maturation as well as posttranscriptional gene expression, we discussed the protein family, structure, expression, functional domain, and region of action. Therefore, this narrative review aims to provide a comprehensive overview of the RBPs, their function, and their role in the process of adult neurogenesis as well as to identify possible research directions on RBPs and neurogenesis.

3.
Front Cell Dev Biol ; 10: 1062807, 2022.
Article in English | MEDLINE | ID: mdl-36699006

ABSTRACT

Background and objective: Prediction of poststroke recovery can be expressed by prognostic biomarkers that are related to the pathophysiology of stroke at the cellular and molecular level as well as to the brain structural and functional reserve after stroke at the systems neuroscience level. This study aimed to review potential biomarkers that can predict poststroke functional recovery. Methods: A narrative review was conducted to qualitatively summarize the current evidence on biomarkers used to predict poststroke functional recovery. Results: Neurophysiological measurements and neuroimaging of the brain and a wide diversity of molecules had been used as prognostic biomarkers to predict stroke recovery. Neurophysiological studies using resting-state electroencephalography (EEG) revealed an interhemispheric asymmetry, driven by an increase in low-frequency oscillation and a decrease in high-frequency oscillation in the ipsilesional hemisphere relative to the contralesional side, which was indicative of individual recovery potential. The magnitude of somatosensory evoked potentials and event-related desynchronization elicited by movement in task-related EEG was positively associated with the quantity of recovery. Besides, transcranial magnetic stimulation (TMS) studies revealed the potential values of using motor-evoked potentials (MEP) and TMS-evoked EEG potentials from the ipsilesional motor cortex as prognostic biomarkers. Brain structures measured using magnetic resonance imaging (MRI) have been implicated in stroke outcome prediction. Specifically, the damage to the corticospinal tract (CST) and anatomical motor connections disrupted by stroke lesion predicted motor recovery. In addition, a wide variety of molecular, genetic, and epigenetic biomarkers, including hemostasis, inflammation, tissue remodeling, apoptosis, oxidative stress, infection, metabolism, brain-derived, neuroendocrine, and cardiac biomarkers, etc., were associated with poor functional outcomes after stroke. However, challenges such as mixed evidence and analytical concerns such as specificity and sensitivity have to be addressed before including molecular biomarkers in routine clinical practice. Conclusion: Potential biomarkers with prognostic values for the prediction of functional recovery after stroke have been identified; however, a multimodal approach of biomarkers for prognostic prediction has rarely been studied in the literature. Future studies may incorporate a combination of multiple biomarkers from big data and develop algorithms using data mining methods to predict the recovery potential of patients after stroke in a more precise way.

4.
Brain Res Bull ; 134: 10-17, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28645861

ABSTRACT

Dextromethorphan (DXM) is one of the common drugs abused by adolescents. It is the active ingredient found in cough medicine which is used for suppressing cough. High dosage of DXM can induce euphoria, dissociative effects and even hallucinations. Chronic use of DXM may also lead to depressive-related symptoms. Lycium barbarum, commonly known as wolfberry, has been used as a traditional Chinese medicine for the treatment of ageing-related neurodegenerative diseases. A recent study has shown the potential beneficial effect of Lycium barbarum to reduce depression-like behavior. In the present study, we investigated the role of Lycium barbarum polysaccharide (LBP) to alleviate DXM-induced emotional distress. Sprague Dawley rats were divided into 4 groups (n=6 per group), including the normal control (vehicles only), DXM-treated group (40 mg/kg DXM), LBP-treated group (1 mg/kg LBP) and DXM+ LBP-treated group (40 mg/kg DXM and 1 mg/kg LBP). After two-week treatment, the DXM-treated group showed increased depression-like and social anxiety-like behaviors in the forced swim test and social interaction test respectively. On the other hand, the adverse behavioral effects induced by DXM were reduced by LBP treatment. Histological results showed that LBP treatment alone did not promote hippocampal neurogenesis when compared to the normal control, but LBP could lessen the suppression of hippocampal neurogenesis induced by DXM. The findings provide insights for the potential use of wolfberry as an adjunct treatment option for alleviating mood disturbances during rehabilitation of cough syrup abusers.


Subject(s)
Anxiety Disorders/drug therapy , Depressive Disorder/drug therapy , Dextromethorphan/toxicity , Drugs, Chinese Herbal/pharmacology , Neuroprotective Agents/pharmacology , Substance-Related Disorders/drug therapy , Animals , Antitussive Agents/toxicity , Anxiety Disorders/chemically induced , Anxiety Disorders/pathology , Anxiety Disorders/physiopathology , Depressive Disorder/chemically induced , Depressive Disorder/pathology , Depressive Disorder/physiopathology , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/pathology , Hippocampus/physiopathology , Male , Neurogenesis/drug effects , Neurons/drug effects , Neurons/pathology , Neurons/physiology , Psychotropic Drugs/pharmacology , Random Allocation , Rats, Sprague-Dawley , Social Behavior , Substance-Related Disorders/pathology , Substance-Related Disorders/physiopathology
5.
Hong Kong J Occup Ther ; 27(1): 42-47, 2016 Jun.
Article in English | MEDLINE | ID: mdl-30186060

ABSTRACT

Adult neurogenesis, defined as the generation of new neurons in adulthood, has been a fascinating discovery in neuroscience, as the continuously replenishing neuronal population provides a new perspective to understand neuroplasticity. Besides maintaining normal physiological function, neurogenesis also plays a key role in pathophysiology and symptomatology for psychiatric conditions. In the past decades, extensive effort has been spent on the understanding of the functional significance of neurogenesis in psychiatric conditions, mechanisms of pharmacological treatment, and discovery of novel drug candidates for different conditions. In a clinical situation, however, long-term rehabilitation treatment, in which occupational therapy is the key discipline, is a valuable, economical, and commonly used treatment alternative to psychotropic medications. Surprisingly, comparatively few studies have investigated the biological and neurogenic effects of different psychiatric rehabilitative treatments. To address the possible linkage between psychiatric rehabilitation and neurogenesis, this review discusses the role of neurogenesis in schizophrenia, major depression, and anxiety disorders. The review also discusses the potential neurogenic effect of currently used psychiatric rehabilitation treatments. With a better understanding of the biological effect of psychiatric rehabilitation methods and future translational studies, it is hoped that the therapeutic effect of psychiatric rehabilitation methods could be explained with a novel perspective. Furthermore, this knowledge will benefit future formulation of treatment methods, especially purposeful activities in occupational therapy, for the treatment of psychiatric disorders.

6.
Exp Brain Res ; 233(7): 2205-14, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25939533

ABSTRACT

Abuse of cough mixture is increasingly prevalent worldwide. Clinical studies showed that chronic consumption of cough mixture at high dosages may lead to psychiatric symptoms, especially affective disturbances, with the underlying mechanisms remain elusive. The present study aims at exploring the effect of repeated, high-dose dextromethorphan (DXM, a common active component of cough mixture) treatment on adult hippocampal neurogenesis, which is associated with pathophysiology of mood disturbances. After treatment with a high-dose of DXM (40 mg/kg/day) for 2 weeks, Sprague-Dawley rats showed increased depression-like behavior when compared to the control animals. Neurogenesis in the hippocampus was suppressed by DXM treatment, which was indicated by decreases in number of proliferative cells and doublecortin (an immature neuron marker)-positive new neurons. Furthermore, the dendritic complexity of the immature neurons was suppressed by DXM treatment. These findings suggest that DXM induces depression- and anxiety-like behavior and suppresses neurogenesis in rats. The current experimental paradigm may serve as an animal model for study on affective effect of cough mixture abuse, rehabilitation treatment options for abusers and the related neurological mechanisms.


Subject(s)
Depression/chemically induced , Depression/pathology , Dextromethorphan/toxicity , Excitatory Amino Acid Antagonists/toxicity , Hippocampus/pathology , Neurogenesis/drug effects , Animals , Body Weight/drug effects , Bromodeoxyuridine/metabolism , Cell Proliferation/drug effects , Dendrites/metabolism , Disease Models, Animal , Dose-Response Relationship, Drug , Doublecortin Domain Proteins , Doublecortin Protein , Exploratory Behavior/drug effects , Interpersonal Relations , Male , Microtubule-Associated Proteins/metabolism , Neurons/cytology , Neurons/drug effects , Neuropeptides/metabolism , Rats , Rats, Sprague-Dawley , Swimming/psychology , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...