Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
2.
EBioMedicine ; 64: 103220, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33529999

ABSTRACT

BACKGROUND: Overexpression of epidermal growth factor receptor (EGFR), and downstream pathway activation appears to be a common oncogenic driver in the majority of head and neck squamous cell cancers (HNSCCs); yet targeting EGFR for the treatment of HNSCC has met with limited success. Apart from the anti-EGFR antibody cetuximab, no small molecule EGFR/tyrosine kinase inhibitors (TKIs) have progressed to routine clinical use. The aim of this study was to determine factors contributing to the lack of response to TKIs and identify alternative therapeutic vulnerabilities. METHODS: Genomic and transcriptomic sequencing, high-throughput compound screens, overexpression and siRNA knockdown, western blot, in vivo xenograft studies. FINDINGS: We derived three pairs of isogenic gefitinib (TKI)-sensitive and resistant patient-derived HNSCC cell lines. Genomic sequencing of gefitinib-resistant cell lines identified a lack of activating and resistance-associated EGFR mutations. Instead, transcriptomic sequencing showed upregulated EMT gene signature in the gefitinib-resistant cells with a corresponding increase in their migratory phenotype. Additionally, the resistant cell displayed reduced growth rate. Surprisingly, while gefitinib-resistant cells were independent of EGFR for survival, they nonetheless displayed activation of downstream ERK and AKT signalling. High-throughput screening (HTS) of druggable, small molecule libraries revealed that the gefitinib-resistant cells were particularly sensitive to inhibitors of genes involved in cell cycle and mitosis, such as Aurora kinase inhibitors (AKIs), cyclin-dependent kinase (CDK) inhibitors, and microtubule inhibitors. Notably our results showed that in the EGFR inhibited state, Aurora kinases are essential for cell survival. INTERPRETATION: Our study demonstrates that in the absence of activating EGFR mutations, HNSCCs may gain resistance to gefitinib through decreased cell proliferation, which makes them exceptionally vulnerable to cell-cycle inhibitors. FUNDING: Agency for Science, Technology, and Research (A*STAR), National Medical Research Council (NMRC), and the National Institutes of Health (NIH)/National Cancer Institute (NCI).


Subject(s)
Aurora Kinases/antagonists & inhibitors , Aurora Kinases/metabolism , Biomarkers, Tumor , Drug Resistance, Neoplasm/genetics , Drug Screening Assays, Antitumor , Gefitinib/pharmacology , Mutation , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cell Survival/genetics , Epithelial-Mesenchymal Transition/drug effects , ErbB Receptors/genetics , Fluorescent Antibody Technique , Humans , Models, Biological , Small Molecule Libraries , Squamous Cell Carcinoma of Head and Neck
3.
Nat Commun ; 11(1): 2086, 2020 04 29.
Article in English | MEDLINE | ID: mdl-32350249

ABSTRACT

Gain of function (GOF) DNA binding domain (DBD) mutations of TP53 upregulate chromatin regulatory genes that promote genome-wide histone methylation and acetylation. Here, we therapeutically exploit the oncogenic GOF mechanisms of p53 codon 158 (Arg158) mutation, a DBD mutant found to be prevalent in lung carcinomas. Using high throughput compound screening and combination analyses, we uncover that acetylating mutp53R158G could render cancers susceptible to cisplatin-induced DNA stress. Acetylation of mutp53R158G alters DNA binding motifs and upregulates TRAIP, a RING domain-containing E3 ubiquitin ligase which dephosphorylates IĸB and impedes nuclear translocation of RelA (p65), thus repressing oncogenic nuclear factor kappa-B (NF-ĸB) signaling and inducing apoptosis. Given that this mechanism of cytotoxic vulnerability appears inapt in p53 wild-type (WT) or other hotspot GOF mutp53 cells, our work provides a therapeutic opportunity specific to Arg158-mutp53 tumors utilizing a regimen consisting of DNA-damaging agents and mutp53 acetylators, which is currently being pursued clinically.


Subject(s)
Codon/genetics , Mutation/genetics , Neoplasms/genetics , Tumor Suppressor Protein p53/genetics , Acetylation/drug effects , Animals , Antineoplastic Agents/pharmacology , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Apoptosis/genetics , Caspase 3/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Cisplatin/pharmacology , Epigenesis, Genetic/drug effects , Gain of Function Mutation/genetics , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hydroxamic Acids/pharmacology , Mice, SCID , Models, Biological , Mutant Proteins/metabolism , NF-kappa B/metabolism , Neoplasms/drug therapy , Nucleotide Motifs/genetics , Poly(ADP-ribose) Polymerases/metabolism , Protein Binding/drug effects , Protein Isoforms/genetics , Sulfonamides/pharmacology , Topotecan/pharmacology , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Xenograft Model Antitumor Assays
4.
Oncotarget ; 8(68): 112825-112840, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29348869

ABSTRACT

Murine double minute 4 protein (MDMX) is crucial for the regulation of the tumor suppressor protein p53. Phosphorylation of the N-terminal domain of MDMX is thought to affect its binding with the transactivation domain of p53, thus playing a role in p53 regulation. In this study, the effects of MDMX phosphorylation on the binding of p53 were investigated using molecular dynamics simulations. It is shown that in addition to the previously proposed mechanism in which phosphorylated Y99 of MDMX inhibits p53 binding through steric clash with P27 of p53, the N-terminal lid of MDMX also appears to play an important role in regulating the phosphorylation-dependent interactions between MDMX and p53. In the proposed mechanism, phosphorylated Y99 aids in pulling the lid into the p53-binding pocket, thus inhibiting the binding between MDMX and p53. Rebinding of p53 appears to be facilitated by the subsequent phosphorylation of Y55, which draws the lid away from the binding pocket by electrostatic attraction of the lid's positively charged N-terminus. The ability to target these mechanisms for the proper regulation of p53 could have important implications for understanding cancer biology and for drug development.

SELECTION OF CITATIONS
SEARCH DETAIL
...