Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Adv Sci (Weinh) ; 11(14): e2302962, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38145965

ABSTRACT

Lipid metabolism and signaling play pivotal functions in biology and disease development. Despite this, currently available optical techniques are limited in their ability to directly visualize the lipidome in tissues. In this study, opto-lipidomics, a new approach to optical molecular tissue imaging is introduced. The capability of vibrational Raman spectroscopy is expanded to identify individual lipids in complex tissue matrices through correlation with desorption electrospray ionization (DESI) - mass spectrometry (MS) imaging in an integrated instrument. A computational pipeline of inter-modality analysis is established to infer lipidomic information from optical vibrational spectra. Opto-lipidomic imaging of transient cerebral ischemia-reperfusion injury in a murine model of ischemic stroke demonstrates the visualization and identification of lipids in disease with high molecular specificity using Raman scattered light. Furthermore, opto-lipidomics in a handheld fiber-optic Raman probe is deployed and demonstrates real-time classification of bulk brain tissues based on specific lipid abundances. Opto-lipidomics opens a host of new opportunities to study lipid biomarkers for diagnostics, prognostics, and novel therapeutic targets.


Subject(s)
Lipidomics , Lipids , Animals , Mice , Lipidomics/methods , Lipids/chemistry , Spectrometry, Mass, Electrospray Ionization/methods , Biomarkers , Lipid Metabolism
2.
Int J Pharm ; 645: 123404, 2023 Oct 15.
Article in English | MEDLINE | ID: mdl-37714312

ABSTRACT

Amino acids-based co-amorphous system (CAM) has shown to be a promising approach to overcome the dissolution challenge of biopharmaceutics classification system class II drugs. To date, most CAM formulations are based on salt formation at a 1:1 M ratio and are prepared by mechanical activation. However, its use in medicinal products is still limited due to the lack of in-depth understanding of non-ionic based molecular interactions. There are also limited studies on the effect of drug-to-co-former ratio, the development of more scalable, less aggressive, manufacturing processes such as freeze drying and its dissolution benefits. This work aims to investigate the effect of the ratio of tryptophan (a model non-ionic amino acid) to indomethacin (a model drug) on a non-salt-based CAM prepared via freeze-drying with the tert-butyl alcohol-water cosolvent system. The CAM material was systemically characterized at various stages of the freeze-drying process using DSC, UV-Vis, FT-IR, NMR, TGA and XRPD. Dissolution performance and physical stability upon storage were also investigated. Freeze-drying using the cosolvent system has been successfully shown to produce CAMs. The molecular interactions involving H-bonding, H/π and π-π between compounds have been confirmed by FT-IR and NMR. The drug release rate for formulations with a 1.5:1 drug: amino acid molar ratio (or 1:0.42 wt ratio) or below is found to be significantly improved compared to the pure crystalline drug. Furthermore, formulation with a 2.3:1 drug:amino acid molar ratio (or 1:0.25 wt ratio) or below have shown to be physically stable for at least 9 months when stored at dry condition (5% relative humidity, 25 °C) compared to the pure amorphous indomethacin. We have demonstrated the potential of freeze-drying using tert-butyl alcohol-water cosolvent system to produce an optimal non-salt-based class II drug-amino acid CAM.


Subject(s)
Amino Acids , tert-Butyl Alcohol , Spectroscopy, Fourier Transform Infrared , tert-Butyl Alcohol/chemistry , Amino Acids/chemistry , Freeze Drying , Water/chemistry , Indomethacin/chemistry , Drug Stability , Solubility , Calorimetry, Differential Scanning
3.
Transl Stroke Res ; 2023 Mar 10.
Article in English | MEDLINE | ID: mdl-36897543

ABSTRACT

Artery-to-artery embolism (AAE) is a common stroke mechanism in intracranial atherosclerotic disease (ICAD), associated with a considerable risk of recurrent stroke. We aimed to investigate cerebral hemodynamic features associated with AAE in symptomatic ICAD. Patients with anterior-circulation, symptomatic ICAD confirmed in CT angiography (CTA) were recruited. We classified probable stroke mechanisms as isolated parent artery atherosclerosis occluding penetrating artery, AAE, hypoperfusion, and mixed mechanisms, largely based on infarct topography. CTA-based computational fluid dynamics (CFD) models were built to simulate blood flow across culprit ICAD lesions. Translesional pressure ratio (PR = Pressurepost-stenotic/Pressurepre-stenotic) and wall shear stress ratio (WSSR = WSSstenotic-throat/WSSpre-stenotic) were calculated, to reflect the relative, translesional changes of the two hemodynamic metrics. Low PR (PR ≤ median) and high WSSR (WSSR ≥ 4th quartile) respectively indicated large translesional pressure and elevated WSS upon the lesion. Among 99 symptomatic ICAD patients, 44 had AAE as a probable stroke mechanism, 13 with AAE alone and 31 with coexisting hypoperfusion. High WSSR was independently associated with AAE (adjusted OR = 3.90; P = 0.022) in multivariate logistic regression. There was significant WSSR-PR interaction on the presence of AAE (P for interaction = 0.013): high WSSR was more likely to associate with AAE in those with low PR (P = 0.075), but not in those with normal PR (P = 0.959). Excessively elevated WSS in ICAD might increase the risk of AAE. Such association was more prominent in those with large translesional pressure gradient. Hypoperfusion, commonly coexisting with AAE, might be a therapeutic indicator for secondary stroke prevention in symptomatic ICAD with AAE.

4.
RSC Adv ; 12(30): 19040-19053, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35865577

ABSTRACT

Amino acids have shown promising abilities to form complexes with poorly water-soluble drugs and improve their physicochemical properties for a better dissolution profile through molecular interactions. Salt formation via ionization between acidic drugs and basic amino acids is known as the major contributor to solubility enhancement. However, the mechanism of solubility enhancement due to non-ionic interactions, which is less pH-dependent, remains unclear. The aim of this study is to evaluate non-ionic interactions between a model acidic drug, indomethacin (IND), and basic amino acids, arginine, lysine and histidine, in water. At low concentrations of amino acids, IND-arginine and IND-lysine complexes have shown a linear relationship (AL-type phase solubility diagram) between IND solubility and amino acid concentration, producing ∼1 : 1 stoichiometry of drug-amino acid complexes as expected due to the strong electrostatic interactions. However, IND-histidine complexes have shown a nonlinear relationship with lower improvement in IND solubility due to the weaker electrostatic interactions when compared to arginine and lysine. Interestingly, the results have also shown that at high arginine concentrations, the linearity was lost between IND solubility and amino acid concentration with a negative diversion from linearity, following the type-AN phase solubility. This is indicative that the electrostatic interaction is being interrupted by non-electrostatic interactions, as seen with histidine. The IND-lysine complex, on the other hand, showed a complex curvature phase solubility diagram (type BS) as lysine self-assembles and polymerizes at higher concentrations. The freeze-dried drug-amino acid solids were further characterized using thermal analysis and infrared spectroscopy, with results showing the involvement of weak non-ionic interactions. This study shows that the solubility improvement of an insoluble drug in the presence of basic amino acids was due to both non-ionic and ionic interactions.

5.
Proc Natl Acad Sci U S A ; 119(18): e2120340119, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35482922

ABSTRACT

Advanced therapies are commonly administered via injection even when they act within the skin tissue, and this increases the chances of off-target effects. Here we report the use of a skin patch containing a hypobaric chamber that induces skin dome formation to enable needleless delivery of advanced therapies directly into porcine, rat, and mouse skin. Finite element method modeling showed that the hypobaric chamber in the patch opened the skin appendages by 32%, thinned the skin, and compressed the appendage wall epithelia. These changes allowed direct delivery of an H1N1 vaccine antigen and a diclofenac nanotherapeutic into the skin. Fluorescence imaging and infrared mapping of the skin showed needleless delivery via the appendages. The in vivo utility of the patch was demonstrated by a superior immunoglobulin G response to the vaccine antigen in mice compared to intramuscular injection and a 70% reduction in rat paw swelling in vivo over 5 h with diclofenac without skin histology changes.


Subject(s)
Skin , Vaccines , Administration, Cutaneous , Animals , Mice , Needles , Rats , Skin/metabolism , Skin Absorption , Swine
6.
Cells ; 11(5)2022 02 25.
Article in English | MEDLINE | ID: mdl-35269433

ABSTRACT

Toxoplasma gondii (T. gondii) is an opportunistic protozoan that can cause brain infection and other serious health consequences in immuno-compromised individuals. This parasite has a remarkable ability to cross biological barriers and exploit the host cell microenvironment to support its own survival and growth. Recent advances in label-free spectroscopic imaging techniques have made it possible to study biological systems at a high spatial resolution. In this study, we used conventional Fourier-transform infrared (FTIR) microspectroscopy and synchrotron-based FTIR microspectroscopy to analyze the chemical changes that are associated with infection of human brain microvascular endothelial cells (hBMECs) by T. gondii (RH) tachyzoites. Both FTIR microspectroscopic methods showed utility in revealing the chemical alterations in the infected hBMECs. Using a ZnS hemisphere device, to increase the numerical aperture, and the synchrotron source to increase the brightness, we obtained spatially resolved spectra from within a single cell. The spectra extracted from the nucleus and cytosol containing the tachyzoites were clearly distinguished. RNA sequencing analysis of T. gondii-infected and uninfected hBMECs revealed significant changes in the expression of host cell genes and pathways in response to T. gondii infection. These FTIR spectroscopic and transcriptomic findings provide significant insight into the molecular changes that occur in hBMECs during T. gondii infection.


Subject(s)
Toxoplasma , Toxoplasmosis , Endothelial Cells , Host-Parasite Interactions , Humans , Transcriptome
7.
Anal Chem ; 93(45): 15015-15023, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34730329

ABSTRACT

The onset of Covid-19 pandemic has resulted in the exponential growth of alcohol-based hand rub (ABHR)/hand sanitizer use. Reports have emerged of ABHR products containing methanol, a highly toxic compound to humans, exposing users to acute and chronic medical illnesses. While gas chromatography-mass spectrometry (GC-MS) remains the gold-standard method for the detection and identification of impurities in ABHRs, there exist limitations at widespread volume testing. This paper demonstrates the capability of an inexpensive portable pyroelectric linear array infrared spectrometer to rapidly test ABHR and compare the performance with a benchtop Fourier transform infrared spectrometer and HS-GC-MS. Multicomponent partial least square quantification models were built with performance found to be comparable between the two spectrometers and with the HS-GC-MS. Furthermore, the portable spectrometer was field-tested with real-world samples in Malaysia on both retail products (Group A) and freely deployed public dispensers (Group B) between May and November 2020. A total of 386 samples were tested. Only 75.2% of Group A met the criteria of safe and effective ABHR [no detectable methanol and alcohol concentration above 60% (v/v)], while <50% of Group B did. In addition, 7.4 and 18.8% of Group A and Group B, respectively, were found to contain methanol above permissible limits. The high percentage of sub-standard and methanol-containing samples combined with the frequent use of ABHR by the public highlights the need for and importance of a portable and rapid testing device for widespread screening of ABHR against falsified products and protects the general public.


Subject(s)
COVID-19 , Hand Sanitizers , Ethanol , Humans , Pandemics , Public Health , SARS-CoV-2
8.
Front Aging Neurosci ; 13: 646961, 2021.
Article in English | MEDLINE | ID: mdl-33958997

ABSTRACT

BACKGROUND: The risk of recurrent stroke following a minor stroke or transient ischemic attack (TIA) is high, when inflammation might play an important role. We aimed to evaluate the value of neutrophil to lymphocyte ratio (NLR) in predicting composite cardiovascular events in patients with minor stroke and TIA. METHODS: Consecutive patients with acute minor stroke or TIA admitted within 24 h of symptoms onset during a 5-year period in a prospective stroke registry were analyzed. We calculated the NLR dividing absolute neutrophil count by absolute lymphocyte count tested within 24 h of admission. NLR ≥4th quartile was defined as high NLR. A composite outcome was defined as stroke, acute coronary syndrome or vascular death within 1 year. We investigated associations between NLR and the composite outcome in univariate and multivariate analyses, among all patients and in those aged over 60 years (i.e., older patients). RESULTS: Overall, 841 patients (median age 68 years; 60.4% males) were recruited. No significant independent association was found between NLR and the composite outcome in multivariate analysis in the overall cohort. Among the 612 older patients (median age 73 years; 59.2% males), the median NLR was 2.76 (interquartile range 1.96-4.00) and 148 (24.2%) patients had high NLR. The composite outcome occurred in 77 (12.6%) older patients, who were more likely to have a high NLR (39.0% versus 22.1%; p = 0.001) than those without a composite outcome. In multivariate logistic regression, high NLR (adjusted odds ratio 2.00; 95% confidence interval 1.07-3.75; p = 0.031) was independently associated with the composite outcome in older patients. CONCLUSION: In older (aged ≥60 years) patients with acute minor stroke or TIA, a higher NLR, a marker of systemic inflammation that can be easily obtained in routine blood tests, is an independent predictor of subsequent cardiovascular events.

9.
Article in English | MEDLINE | ID: mdl-33785575

ABSTRACT

BACKGROUND: Intracranial arterial stenosis (ICAS) is an important cause of stroke worldwide. Separate reports in Caucasians and Asians with stroke/transient ischaemic attack (TIA) have suggested lower ICAS prevalence in Caucasians, but there has been no direct comparisons of the two ethnic groups with the same criteria to define ICAS. METHODS: Acute minor stroke or TIA patients in two cohorts respectively recruiting patients in Oxford (2011-2018, predominantly Caucasians) and Hong Kong (2011-2015, predominantly Chinese) were compared. ICAS was defined as ≥50% stenosis/occlusion in any major intracranial artery in MR/CT angiography. Prevalence, distribution and risk factors of ICAS were compared between the two cohorts. We also systematically reviewed literature on ICAS prevalence in stroke/TIA patients in different populations. RESULTS: Among 1287 patients from Oxford and 691 from Hong Kong (mean age 69 vs 66), ICAS prevalence was higher in Chinese than in Caucasians (43.0% vs 20.0%; OR 3.02; 95% CI 2.47 to 3.70; p<0.001), independent of age (age-adjusted OR 3.73; 95% CI 3.00 to 4.63; p<0.001) and vascular risk factors (multivariable-adjusted OR 3.21; 95% CI 2.56 to 4.02; p<0.001). This ethnic difference was greater (p interaction=0.005) at age <70 years (OR 5.33; 95% CI 3.79 to 7.50; p<0.001) than at ≥70 years (OR 2.81; 95% CI 2.11 to 3.74; p<0.001). ICAS prevalence increased with age and with vascular risk factors in both cohorts, with equivalent prevalence in Chinese aged <60 years and Caucasians aged ≥80, and in Chinese with no vascular risk factor and Caucasians with two vascular risk factors. ICAS locations also differed between Chinese and Caucasian patients. CONCLUSIONS: Chinese are more susceptible to ICAS than Caucasians, with an earlier onset age and a higher prevalence, independent of vascular risk factors.

10.
Pathogens ; 9(9)2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32957663

ABSTRACT

We examined the inhibitory effect of matcha green tea (Camellia sinensis) and epigallocatechin gallate (EGCg; the most abundant catechin in tea) on the vegetative growth and encystation of Acanthamoeba castellanii T4 genotype. The sulforhodamine B (SRB) stain-based colorimetric assay and hemocytometer counting were used to determine the reduction in A. castellanii trophozoite proliferation and encystation, in response to treatment with C. sinensis or EGCg. Fourier transform infrared (FTIR) microscopy was used to analyze chemical changes in the trophozoites and cysts due to C. sinensis treatment. Hot brewed and cold brewed matcha inhibited the growth of trophozoites by >40% at a 100 % concentration. EGCg at concentrations of 50 to 500 µM significantly inhibited the trophozoite growth compared to control. Hot brewed matcha (100% concentration) also showed an 87% reduction in the rate of encystation compared to untreated control. Although 500 µM of EGCg increased the rate of encystation by 36.3%, 1000 µM reduced it by 27.7%. Both percentages were not significant compared to control. C. sinensis induced more cytotoxicity to Madin Darby canine kidney cells compared to EGCg. FTIR chemical fingerprinting analysis showed that treatment with brewed matcha significantly increased the levels of glycogen and carbohydrate in trophozoites and cysts.

11.
ACS Omega ; 5(22): 12698-12706, 2020 Jun 09.
Article in English | MEDLINE | ID: mdl-32548453

ABSTRACT

Recently, we have shown that changes in Fourier transform infrared (FTIR) spectra of living MDA-MB-231 cells (a triple negative cell line) upon exposure to anticancer drugs reflect the changes in the cellular compositions which are correlated to the modes of action of drugs. In the present study, MCF7 cells (an estrogen receptor expressing breast cancer cell line) were exposed to three anticancer drugs belonging to two well-characterized anticancer classes: selective estrogen receptor modulators (SERMs) and DNA-intercalating agent. First, we evaluated if the changes in the spectrum of cells are according to the modes of action of drugs and the characteristics of the MCF7 cell line in the same way as the MDA-MB-231 cell. Living MCF7 cells were treated in the three drugs at half maximal inhibitory concentration (IC50), and the difference spectra were analyzed using principal component analysis (PCA). The results demonstrated clear separation between tamoxifen/toremifene (SERM)-treated cells from the doxorubicin (DNA-intercalator)-treated and untreated cells (control). Tamoxifen and toremifene induced similar spectral changes in the cellular compositions of MCF7 cells and lead to the clustering of these two drugs in the same quadrant of the principal component 1 (PC1) versus PC2 score plots. The separation is mostly attributed to their similar modes of actions. However, doxorubicin-treated MCF7 cells highlighted spectral changes that mainly occur in bands at 1085 and 1200-1240 cm-1, which could be associated with the DNA-intercalation effects of the drug. Second, the pairwise PCA at various individual time points was employed to investigate whether the spectral changes of MCF7 and MDA-MB-231 cells in response to the IC50 of tamoxifen/toremifene and doxorubicin are dependent on the characteristics of the cell lines. The estrogen-expressing MCF7 cells demonstrated significant differences in response to the SERMs in comparison to the triple negative MDA-MB-231 cells, suggesting that different modes of action have taken place in the two tested cell lines. In contrast, the doxorubicin-treated MDA-MB-231 and MCF7 cells show similar changes in 1150-950 cm-1, which indicates that the DNA intercalation effect of doxorubicin is found in both cell lines. The results have demonstrated that live-cell FTIR analysis is sensitive to the different modes of action from the same drugs on cells with different characteristics.

12.
Anal Chem ; 92(12): 8097-8107, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32396367

ABSTRACT

Synchrotron resonance-enhanced infrared atomic force microscopy (RE-AFM-IR) is a near-field photothermal vibrational nanoprobe developed at Diamond Light Source (DLS), capable of measuring mid-infrared absorption spectra with spatial resolution around 100 nm. The present study reports a first application of synchrotron RE-AFM-IR to interrogate biological soft matter at the subcellular level, in this case, on a cellular model of drug-induced phospholipidosis (DIPL). J774A-1 macrophages were exposed to amiodarone (10 µM) or medium for 24 h and chemically fixed. AFM topography maps revealed amiodarone-treated cells with enlarged cytoplasm and very thin regions corresponding to collapsed vesicles. IR maps of the whole cell were analyzed by exploiting the RE-AFM-IR overall signal, i.e., the integrated RE-AFM-IR signal amplitude versus AFM-derived cell thickness, also on lateral resolution around 100 nm. Results show that vibrational band assignment was possible, and all characteristic peaks for lipids, proteins, and DNA/RNA were identified. Both peak ratio and unsupervised chemometric analysis of RE-AFM-IR nanospectra generated from the nuclear and perinuclear regions of untreated and amiodarone-treated cells showed that the perinuclear region (i.e., cytoplasm) of amiodarone-treated cells had significantly elevated band intensities in the regions corresponding to phosphate and carbonyl groups, indicating detection of phospholipid-rich inclusion bodies typical for cells with DIPL. The results of this study are of importance to demonstrate not only the applicability of Synchrotron RE-AFM-IR to soft biological matters with subcellular spatial resolution but also that the spectral information gathered from an individual submicron sample volume enables chemometric identification of treatment and biochemical differences between mammalian cells.


Subject(s)
Amiodarone/pharmacology , Anti-Arrhythmia Agents/pharmacology , Macrophages/drug effects , Phospholipids/antagonists & inhibitors , Synchrotrons , Temperature , Animals , Cells, Cultured , Macrophages/metabolism , Mice , Phospholipids/metabolism , Photochemical Processes , Spectrophotometry, Infrared
13.
Stroke ; 51(6): 1862-1864, 2020 06.
Article in English | MEDLINE | ID: mdl-32312220

ABSTRACT

Background and Purpose- There is debate over an optimal systolic blood pressure (SBP) in secondary stroke prevention of patients with symptomatic intracranial atherosclerotic stenosis (sICAS). We investigated whether translesional pressure gradient across sICAS would alter the relationship between SBP and risk of recurrent stroke in such patients. Methods- We recruited patients with sICAS (50%-99% stenosis) confirmed in computed tomography angiography. We simulated blood flow across sICAS with computed tomography angiography-based computational fluid dynamics models. Translesional pressure ratio (PR=Pressurepost-stenotic/Pressurepre-stenotic) was calculated in each case. Pressure ratio (PR) ≤ median was defined as low PR, indicating larger translesional pressure gradient across sICAS. All patients received optimal medical treatment. We investigated the interaction of translesional PR and mean SBP during follow-up (SBPFU) in determining the risk of the primary outcome, recurrent ischemic stroke in the same territory within 1 year. Results- Among 157 patients with sICAS, the median PR was 0.93. Multivariate Cox regression revealed significant PR-SBPFU interaction on the primary outcome (P=0.008): in patients with normal PR, risk of primary outcome significantly decreased with lower SBPFU (hazard ratio for 10 mm Hg decrement =0.46; P=0.018); however, in those with low PR, SBPFU≤130 mm Hg was associated with significantly increased risk of primary outcome, compared with 130

Subject(s)
Blood Pressure , Brain Ischemia , Cerebral Angiography , Computed Tomography Angiography , Intracranial Arteriosclerosis , Models, Cardiovascular , Stroke , Aged , Brain Ischemia/diagnostic imaging , Brain Ischemia/physiopathology , Constriction, Pathologic/diagnostic imaging , Constriction, Pathologic/physiopathology , Female , Follow-Up Studies , Humans , Intracranial Arteriosclerosis/diagnostic imaging , Intracranial Arteriosclerosis/physiopathology , Male , Middle Aged , Risk Factors , Stroke/diagnostic imaging , Stroke/physiopathology
14.
Sci Rep ; 10(1): 2848, 2020 02 18.
Article in English | MEDLINE | ID: mdl-32071372

ABSTRACT

A large proportion of cases with chronic conditions including diabetes or pre-diabetes, hypertension and dyslipidemia remain undiagnosed. To include reproductive factors (RF) might be able to improve current screening guidelines by providing extra effectiveness. The objective is to study the relationships between RFs and chronic conditions' biomarkers. A cross-sectional study was conducted. Demographics, RFs and metabolic biomarkers were collected. The relationship of the metabolic biomarkers were shown by correlation analysis. Principal component analysis (PCA) and autoencoder were compared by cross-validation. The better one was adopted to extract a single marker, the general chronic condition (GCC), to represent the body's chronic conditions. Multivariate linear regression was performed to explore the relationship between GCC and RFs. In total, 1,656 postmenopausal females were included. A multi-layer autoencoder outperformed PCA in the dimensionality reduction performance. The extracted variable by autoencoder, GCC, was verified to be representative of three chronic conditions (AUC for patoglycemia, hypertension and dyslipidemia were 0.844, 0.824 and 0.805 respectively). Linear regression showed that earlier age at menarche (OR = 0.9976) and shorter reproductive life span (OR = 0.9895) were associated with higher GCC. Autoencoder performed well in the dimensionality reduction of clinical metabolic biomarkers. Due to high accessibility and effectiveness, RFs have potential to be included in screening tools for general chronic conditions and could enhance current screening guidelines.


Subject(s)
Diabetes Mellitus/epidemiology , Dyslipidemias/epidemiology , Hypertension/epidemiology , Prediabetic State/epidemiology , Adult , Aged , Biomarkers/blood , Chronic Disease/epidemiology , Diabetes Mellitus/blood , Diabetes Mellitus/diagnosis , Diabetes Mellitus/pathology , Dyslipidemias/diagnosis , Dyslipidemias/pathology , Female , Guidelines as Topic , Humans , Hypertension/diagnosis , Hypertension/pathology , Machine Learning , Male , Mass Screening , Middle Aged , Multivariate Analysis , Prediabetic State/diagnosis , Prediabetic State/pathology , Principal Component Analysis , Risk Factors
15.
Appl Spectrosc ; 74(5): 544-552, 2020 May.
Article in English | MEDLINE | ID: mdl-32031010

ABSTRACT

Fourier transform infrared (FT-IR) spectroscopic imaging and microscopy of single living cells are established label-free technique for the study of cell biology. The constant driver to improve the spatial resolution of the technique is due to the diffraction limit given by infrared (IR) wavelength making subcellular study challenging. Recently, we have reported, with the use of a prototype zinc sulfide (ZnS) transmission cell made of two hemispheres, that the spatial resolution is improved by the factor of the refractive index of ZnS, achieving a λ/2.7 spatial resolution using the synchrotron-IR microscopy with a 36× objective with numerical aperture of 0.5. To refine and to demonstrate that the ZnS hemisphere transmission device can be translated to standard bench-top FT-IR imaging systems, we have, in this work, modified the device to achieve a more precise path length, which has improved the spectral quality of the living cells, and showed for the first time that the device can be applied to study live cells with three different bench-top FT-IR imaging systems. We applied focal plane array (FPA) imaging, linear array, and a synchrotron radiation single-point scanning method and demonstrated that in all cases, subcellular details of individual living cells can be obtained. Results have shown that imaging with the FPA detector can measure the largest area in a given time, while measurements from the scanning methods produced a smoother image. Synchrotron radiation single-point mapping produced the best quality image and has the flexibility to introduce over sampling to produce images of cells with great details, but it is time consuming in scanning mode. In summary, this work has demonstrated that the ZnS hemispheres can be applied in all three spectroscopic approaches to improve the spatial resolution without any modification to the existing microscopes.


Subject(s)
Spectroscopy, Fourier Transform Infrared/instrumentation , Spectroscopy, Fourier Transform Infrared/methods , A549 Cells , Humans , Lenses , Microscopy, Electron, Scanning/instrumentation , Microscopy, Electron, Scanning/methods , Sulfides/chemistry , Synchrotrons/instrumentation , Zinc Compounds/chemistry
16.
J Cereb Blood Flow Metab ; 40(1): 126-134, 2020 01.
Article in English | MEDLINE | ID: mdl-30351176

ABSTRACT

We aimed to investigate the roles of antegrade residual flow and leptomeningeal collateral flow in sustaining cerebral perfusion distal to an intracranial atherosclerotic stenosis (ICAS). Patients with apparently normal cerebral perfusion distal to a symptomatic middle cerebral artery (MCA)-M1 stenosis were enrolled. Computational fluid dynamics models were built based on CT angiography to obtain a translesional pressure ratio (PR) to gauge the residual antegrade flow. Leptomeningeal collaterals (LMCs) were scaled on CT angiography. Cerebral perfusion metrics were obtained in CT perfusion maps. Among 83 patients, linear regression analyses revealed that both translesional PR and LMC scale were independently associated with relative ipsilesional mean transit time (rMTT). Subgroup analyses showed that ipsilesional rMTT was significantly associated with translesional PR (p < 0.001) rather than LMC scale in those with a moderate (50-69%) MCA stenosis, which, however, was only significantly associated with LMC scale (p = 0.051) in those with a severe (70-99%) stenosis. Antegrade residual flow and leptomeningeal collateral flow have complementary effects in sustaining cerebral perfusion distal to an ICAS, while cerebral perfusion may rely more on the collateral circulation in those with a severe stenosis.


Subject(s)
Cerebrovascular Circulation , Collateral Circulation , Constriction, Pathologic/physiopathology , Adult , Aged , Computed Tomography Angiography , Female , Humans , Intracranial Arteriosclerosis/physiopathology , Male , Meninges/blood supply , Middle Aged , Middle Cerebral Artery/physiopathology , Perfusion , Regional Blood Flow
17.
Stroke ; 50(10): 2692-2699, 2019 10.
Article in English | MEDLINE | ID: mdl-31409268

ABSTRACT

Background and Purpose- In patients with symptomatic intracranial atherosclerotic stenosis, identifying the underlying stroke mechanisms may inform secondary prevention. We aimed to propose reproducible classification criteria for stroke mechanisms based on routine neuroimaging in symptomatic intracranial atherosclerotic stenosis and explore their clinical implications. Methods- We recruited patients with acute ischemic stroke attributed to 50% to 99% intracranial atherosclerotic stenosis in anterior circulation from 2 centers. Two investigators independently classified probable stroke mechanisms as parent artery atherosclerosis occluding penetrating artery, artery-to-artery embolism, hypoperfusion, and mixed mechanisms, with prespecified criteria based on infarct topography and magnetic resonance/computed tomography angiography. These stroke mechanisms were correlated with features of the patients at baseline and recurrent ischemic stroke in the same territory or relevant transient ischemic attack within 1 year. Results- Among 153 patients recruited, the most common stroke mechanisms were isolated hypoperfusion (35.3%) and mixed mechanism of artery-to-artery embolism and hypoperfusion (37.3%) that was associated with higher incidence of dyslipidemia (P=0.045) and hypertension (P=0.033) than patients with other stroke mechanisms. The proposed criteria showed substantial to excellent intrarater and interrater reproducibilities (κ, 0.791-0.908). Overall, 31 patients received interventional treatment of the diseased intracranial artery; 122 received medical treatment, among whom a mixed mechanism of artery-to-artery embolism and hypoperfusion at baseline was associated with higher risk of ischemic stroke in the same territory within 1 year (24.4% versus 7.8%; hazard ratio, 3.40; 95% CI, 1.25-9.20; log-rank P=0.010) than other mechanisms combined. Conclusions- Artery-to-artery embolism and hypoperfusion commonly coexist in ischemic stroke attributed to intracranial atherosclerotic stenosis, which may be associated with higher risk of stroke relapse.


Subject(s)
Intracranial Arteriosclerosis/complications , Stroke/classification , Stroke/etiology , Stroke/pathology , Aged , Brain Ischemia/classification , Brain Ischemia/etiology , Brain Ischemia/pathology , Female , Humans , Male , Middle Aged , Neuroimaging
18.
Ann Neurol ; 85(5): 752-764, 2019 05.
Article in English | MEDLINE | ID: mdl-30840312

ABSTRACT

OBJECTIVE: To investigate whether hemodynamic features of symptomatic intracranial atherosclerotic stenosis (sICAS) might correlate with the risk of stroke relapse, using a computational fluid dynamics (CFD) model. METHODS: In a cohort study, we recruited patients with acute ischemic stroke attributed to 50 to 99% ICAS confirmed by computed tomographic angiography (CTA). With CTA-based CFD models, translesional pressure ratio (PR = pressurepoststenotic /pressureprestenotic ) and translesional wall shear stress ratio (WSSR = WSSstenotic - throat /WSSprestenotic ) were obtained in each sICAS lesion. Translesional PR ≤ median was defined as low PR and WSSR ≥4th quartile as high WSSR. All patients received standard medical treatment. The primary outcome was recurrent ischemic stroke in the same territory (SIT) within 1 year. RESULTS: Overall, 245 patients (median age = 61 years, 63.7% males) were analyzed. Median translesional PR was 0.94 (interquartile range [IQR] = 0.87-0.97); median translesional WSSR was 13.3 (IQR = 7.0-26.7). SIT occurred in 20 (8.2%) patients, mostly with multiple infarcts in the border zone and/or cortical regions. In multivariate Cox regression, low PR (adjusted hazard ratio [HR] = 3.16, p = 0.026) and high WSSR (adjusted HR = 3.05, p = 0.014) were independently associated with SIT. Patients with both low PR and high WSSR had significantly higher risk of SIT than those with normal PR and WSSR (risk = 17.5% vs 3.0%, adjusted HR = 7.52, p = 0.004). INTERPRETATION: This work represents a step forward in utilizing computational flow simulation techniques in studying intracranial atherosclerotic disease. It reveals a hemodynamic pattern of sICAS that is more prone to stroke relapse, and supports hypoperfusion and artery-to-artery embolism as common mechanisms of ischemic stroke in such patients. Ann Neurol 2019;85:752-764.


Subject(s)
Brain Ischemia/diagnostic imaging , Hemodynamics/physiology , Intracranial Arteriosclerosis/diagnostic imaging , Stroke/diagnostic imaging , Aged , Brain Ischemia/epidemiology , Brain Ischemia/physiopathology , Cohort Studies , Female , Follow-Up Studies , Humans , Intracranial Arteriosclerosis/epidemiology , Intracranial Arteriosclerosis/physiopathology , Male , Middle Aged , Prospective Studies , Retrospective Studies , Risk Factors , Stroke/epidemiology , Stroke/physiopathology
19.
Front Neurol ; 10: 171, 2019.
Article in English | MEDLINE | ID: mdl-30881336

ABSTRACT

Background and Purpose: The risk of recurrent stroke following a transient ischemic attack (TIA) or minor stroke is high, despite of a significant reduction in the past decade. In this study, we investigated the feasibility of using artificial neural network (ANN) for risk stratification of TIA or minor stroke patients. Methods: Consecutive patients with acute TIA or minor ischemic stroke presenting at a tertiary hospital during a 2-year period were recruited. We collected demographics, clinical and imaging data at baseline. The primary outcome was recurrent ischemic stroke within 1 year. We developed ANN models to predict the primary outcome. We randomly down-sampled patients without a primary outcome to 1:1 match with those with a primary outcome to mitigate data imbalance. We used a 5-fold cross-validation approach to train and test the ANN models to avoid overfitting. We employed 19 independent variables at baseline as the input neurons in the ANN models, using a learning algorithm based on backpropagation to minimize the loss function. We obtained the sensitivity, specificity, accuracy and the c statistic of each ANN model from the 5 rounds of cross-validation and compared that of support vector machine (SVM) and Naïve Bayes classifier in risk stratification of the patients. Results: A total of 451 acute TIA or minor stroke patients were enrolled. Forty (8.9%) patients had a recurrent ischemic stroke within 1 year. Another 40 patients were randomly selected from those with no recurrent stroke, so that data from 80 patients in total were used for 5 rounds of training and testing of ANN models. The median sensitivity, specificity, accuracy and c statistic of the ANN models to predict recurrent stroke at 1 year was 75%, 75%, 75%, and 0.77, respectively. ANN model outperformed SVM and Naïve Bayes classifier in our dataset for predicting relapse after TIA or minor stroke. Conclusion: This pilot study indicated that ANN may yield a novel and effective method in risk stratification of TIA and minor stroke. Further studies are warranted for verification and improvement of the current ANN model.

20.
Chem Commun (Camb) ; 54(77): 10878-10881, 2018 Sep 25.
Article in English | MEDLINE | ID: mdl-30204160

ABSTRACT

Here we identify hundreds of RNA G-quadruplex (rG4) candidates in microRNAs (miRNAs), characterize the miRNA structure and miRNA-mRNA interactions on several mammalian-conserved miRNAs, and reveal the formation of rG4s in miRNAs. Notably, we study the effect of these rG4s in cells and uncover the role of rG4s in miRNA-mediated post-transcriptional regulation.


Subject(s)
G-Quadruplexes , MicroRNAs/chemistry , HEK293 Cells , Humans , MicroRNAs/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...