Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Mol Med (Berl) ; 98(8): 1161-1173, 2020 08.
Article in English | MEDLINE | ID: mdl-32632752

ABSTRACT

Small molecules targeting the cereblon-containing E3 ubiquitin ligase including thalidomide, lenalidomide, and pomalidomide modulate turnover of downstream client proteins and demonstrate pre-clinical and clinical anti-myeloma activity. Different drugs that engage with cereblon hold the potential of unique phenotypic effects, and we therefore studied the novel protein homeostatic modulator (PHM™) BTX306 with a unique thiophene-fused scaffold bearing a substituted phenylurea and glutarimide. This agent much more potently reduced human-derived myeloma cell line viability, with median inhibitory concentrations in the single nanomolar range versus micromolar values for lenalidomide or pomalidomide, and more potently activated caspases 3/8/9. While lenalidomide and pomalidomide induced greater degradation of Ikaros and Aiolos in myeloma cells, BTX306 more potently reduced levels of GSPT1, eRF1, CK1α, MCL-1, and c-MYC. Suppression of cereblon or overexpression of Aiolos or Ikaros induced relative resistance to BTX306, and this agent did not impact viability of murine hematopoietic cells in an in vivo model, demonstrating its specificity for human cereblon. Interestingly, BTX306 did show some reduced activity in lenalidomide-resistant cell line models but nonetheless retained its nanomolar potency in vitro, overcame bortezomib resistance, and was equipotent against otherwise isogenic cell line models with either wild-type or knockout TP53. Finally, BTX306 demonstrated strong activity against primary CD138-positive plasma cells, showed enhanced anti-proliferative activity in combination with bortezomib and dexamethasone, and was effective in an in vivo systemic model of multiple myeloma. Taken together, the data support further translational studies of BTX306 and its derivatives to the clinic for patients with relapsed and/or refractory myeloma. KEY MESSAGES: BTX306 has a unique thiophene-fused scaffold bearing phenylurea and glutarimide. BTX306 is more potent against myeloma cells than lenalidomide or pomalidomide. BTX306 overcomes myeloma cell resistance to lenalidomide or bortezomib in vitro. BTX306 is active against primary myeloma cells, and shows efficacy in vivo.


Subject(s)
Antineoplastic Agents/pharmacology , Bortezomib/pharmacology , Drug Resistance, Neoplasm/drug effects , Lenalidomide/pharmacology , Proteostasis/drug effects , Animals , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Biomarkers, Tumor , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Drug Resistance, Neoplasm/genetics , Humans , Mice , Multiple Myeloma , Ubiquitin-Protein Ligases/antagonists & inhibitors
2.
Am J Physiol Heart Circ Physiol ; 315(3): H563-H570, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29949382

ABSTRACT

Cardiac fibroblasts are critical mediators of fibrotic remodeling in the failing heart and transform into myofibroblasts in the presence of profibrotic factors such as transforming growth factor-ß. Myocardial fibrosis worsens cardiac function, accelerating the progression to decompensated heart failure (HF). We investigated the effects of a novel inhibitor (NM922; NovoMedix, San Diego, CA) of the conversion of normal fibroblasts to the myofibroblast phenotype in the setting of pressure overload-induced HF. NM922 inhibited fibroblast-to-myofibroblast transformation in vitro via a reduction of activation of the focal adhesion kinase-Akt-p70S6 kinase and STAT3/4E-binding protein 1 pathways as well as via induction of cyclooxygenase-2. NM922 preserved left ventricular ejection fraction ( P < 0.05 vs. vehicle) and significantly attenuated transverse aortic constriction-induced LV dilation and hypertrophy ( P < 0.05 compared with vehicle). NM922 significantly ( P < 0.05) inhibited fibroblast activation, as evidenced by reduced myofibroblast counts per square millimeter of tissue area. Picrosirius red staining demonstrated that NM922 reduced ( P < 0.05) interstitial fibrosis compared with mice that received vehicle. Similarly, NM922 hearts had lower mRNA levels ( P < 0.05) of collagen types I and III, lysyl oxidase, and TNF-α at 16 wk after transverse aortic constriction. Treatment with NM922 after the onset of cardiac hypertrophy and HF resulted in attenuated myocardial collagen formation and adverse remodeling with preservation of left ventricular ejection fraction. Future studies are aimed at further elucidation of the molecular and cellular mechanisms by which this novel antifibrotic agent protects the failing heart. NEW & NOTEWORTHY Our data demonstrated that a novel antifibrotic agent, NM922, blocks the activation of fibroblasts, reduces the formation of cardiac fibrosis, and preserves cardiac function in a murine model of heart failure with reduced ejection fraction.


Subject(s)
Cardiotonic Agents/pharmacology , Heart Failure/drug therapy , Myofibroblasts/drug effects , Sulfonamides/pharmacology , Ventricular Remodeling/drug effects , Animals , Cardiotonic Agents/therapeutic use , Cells, Cultured , Collagen/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Myofibroblasts/metabolism , Protein-Lysine 6-Oxidase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Ribosomal Protein S6 Kinases, 70-kDa/metabolism , STAT3 Transcription Factor/metabolism , Sulfonamides/chemistry , Sulfonamides/therapeutic use , Transforming Growth Factor beta/metabolism
3.
Blood ; 127(11): 1481-92, 2016 Mar 17.
Article in English | MEDLINE | ID: mdl-26679864

ABSTRACT

Current therapeutic strategies for sickle cell anemia are aimed at reactivating fetal hemoglobin. Pomalidomide, a third-generation immunomodulatory drug, was proposed to induce fetal hemoglobin production by an unknown mechanism. Here, we report that pomalidomide induced a fetal-like erythroid differentiation program, leading to a reversion of γ-globin silencing in adult human erythroblasts. Pomalidomide acted early by transiently delaying erythropoiesis at the burst-forming unit-erythroid/colony-forming unit-erythroid transition, but without affecting terminal differentiation. Further, the transcription networks involved in γ-globin repression were selectively and differentially affected by pomalidomide including BCL11A, SOX6, IKZF1, KLF1, and LSD1. IKAROS (IKZF1), a known target of pomalidomide, was degraded by the proteasome, but was not the key effector of this program, because genetic ablation of IKZF1 did not phenocopy pomalidomide treatment. Notably, the pomalidomide-induced reprogramming was conserved in hematopoietic progenitors from individuals with sickle cell anemia. Moreover, multiple myeloma patients treated with pomalidomide demonstrated increased in vivo γ-globin levels in their erythrocytes. Together, these data reveal the molecular mechanisms by which pomalidomide reactivates fetal hemoglobin, reinforcing its potential as a treatment for patients with ß-hemoglobinopathies.


Subject(s)
Hematopoietic Stem Cells/drug effects , Thalidomide/analogs & derivatives , Transcription, Genetic/drug effects , gamma-Globins/genetics , Adult , Anemia, Sickle Cell/blood , Anemia, Sickle Cell/genetics , Carrier Proteins/blood , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/drug effects , Erythroid Precursor Cells/metabolism , Erythropoiesis/drug effects , Fetal Hemoglobin/biosynthesis , Gene Expression Regulation, Developmental , Genetic Vectors/genetics , Hematopoietic Stem Cells/metabolism , Histone Demethylases/blood , Humans , Ikaros Transcription Factor/blood , Ikaros Transcription Factor/drug effects , Kruppel-Like Transcription Factors/blood , Lentivirus/genetics , Multiple Myeloma/blood , Multiple Myeloma/genetics , Neoplasm Proteins/biosynthesis , Neoplasm Proteins/genetics , Nuclear Proteins/blood , Proteasome Endopeptidase Complex/metabolism , RNA Interference , RNA, Small Interfering/genetics , Repressor Proteins , SOXD Transcription Factors/blood , Thalidomide/pharmacology , beta-Globins/biosynthesis , beta-Globins/genetics , gamma-Globins/biosynthesis
4.
J Transl Med ; 8: 34, 2010 Apr 08.
Article in English | MEDLINE | ID: mdl-20377846

ABSTRACT

The medical significance of circulating endothelial or hematopoietic progenitors is becoming increasing recognized. While therapeutic augmentation of circulating progenitor cells using G-CSF has resulted in promising preclinical and early clinical data for several degenerative conditions, this approach is limited by cost and inability to perform chronic administration. Stem-Kine is a food supplement that was previously reported to augment circulating EPC in a pilot study. Here we report a trial in 18 healthy volunteers administered Stem-Kine twice daily for a 2 week period. Significant increases in circulating CD133 and CD34 cells were observed at days 1, 2, 7, and 14 subsequent to initiation of administration, which correlated with increased hematopoietic progenitors as detected by the HALO assay. Augmentation of EPC numbers in circulation was detected by KDR-1/CD34 staining and colony forming assays. These data suggest Stem-Kine supplementation may be useful as a stimulator of reparative processes associated with mobilization of hematopoietic and endothelial progenitors.


Subject(s)
Cell Movement , Dietary Supplements , Endothelial Cells/cytology , Hematopoietic Stem Cells/cytology , AC133 Antigen , Adult , Aged , Antigens, CD/metabolism , Antigens, CD34/metabolism , Biological Assay , Cell Count , Colony-Forming Units Assay , Endothelial Cells/metabolism , Erythroid Precursor Cells/cytology , Erythroid Precursor Cells/metabolism , Glycoproteins/metabolism , Hematopoietic Stem Cells/metabolism , Humans , Middle Aged , Peptides/metabolism , Phenotype , Young Adult
5.
J Transl Med ; 7: 106, 2009 Dec 15.
Article in English | MEDLINE | ID: mdl-20003528

ABSTRACT

Endothelial dysfunction is associated with major causes of morbidity and mortality, as well as numerous age-related conditions. The possibility of preserving or even rejuvenating endothelial function offers a potent means of preventing/treating some of the most fearful aspects of aging such as loss of mental, cardiovascular, and sexual function.Endothelial precursor cells (EPC) provide a continual source of replenishment for damaged or senescent blood vessels. In this review we discuss the biological relevance of circulating EPC in a variety of pathologies in order to build the case that these cells act as an endogenous mechanism of regeneration. Factors controlling EPC mobilization, migration, and function, as well as therapeutic interventions based on mobilization of EPC will be reviewed. We conclude by discussing several clinically-relevant approaches to EPC mobilization and provide preliminary data on a food supplement, Stem-Kine, which enhanced EPC mobilization in human subjects.


Subject(s)
Aging/pathology , Endothelial Cells/cytology , Regenerative Medicine/methods , Stem Cells/cytology , Animals , Blood Vessels/pathology , Humans , Inflammation/pathology
6.
Cancer Res ; 69(18): 7347-56, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19738071

ABSTRACT

Lenalidomide and pomalidomide have both been evaluated clinically for their properties as anticancer agents, with lenalidomide being available commercially. We previously reported that both compounds cause cell cycle arrest in Burkitt's lymphoma and multiple myeloma cell lines by increasing the level of p21(WAF-1) expression. In the present study, we unravel the molecular mechanism responsible for p21(WAF-1) up-regulation using Namalwa cells as a human lymphoma model. We show that the increase of p21(WAF-1) expression is regulated at the transcriptional level through a mechanism independent of p53. Using a combination of approaches, we show that several GC-rich binding transcription factors are involved in pomalidomide-mediated up-regulation of p21(WAF-1). Furthermore, we report that p21(WAF-1) up-regulation is associated with a switch from methylated to acetylated histone H3 on p21(WAF-1) promoter. Interestingly, lysine-specific demethylase-1 (LSD1) silencing reduced both pomalidomide and lenalidomide up-regulation of p21(WAF-1), suggesting that this histone demethylase is involved in the priming of the p21(WAF-1) promoter. Based on our findings, we propose a model in which pomalidomide and lenalidomide modify the chromatin structure of the p21(WAF-1) promoter through demethylation and acetylation of H3K9. This effect, mediated via LSD1, provides GC-rich binding transcription factors better access to DNA, followed by recruitment of RNA polymerase II and transcription activation. Taken together, our results provide new insights on the mechanism of action of pomalidomide and lenalidomide in the regulation of gene transcription, imply possible efficacy in p53 mutated and deleted cancer, and suggest new potential clinical uses as an epigenetic therapy.


Subject(s)
Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Lymphoma/drug therapy , Multiple Myeloma/drug therapy , Oxidoreductases, N-Demethylating/metabolism , Thalidomide/analogs & derivatives , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Chromatin/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Gene Expression Regulation, Neoplastic/drug effects , Histone Demethylases , Histones/genetics , Histones/metabolism , Humans , Lenalidomide , Lymphoma/genetics , Lymphoma/metabolism , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Oxidoreductases, N-Demethylating/genetics , Thalidomide/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism
7.
Cancer Res ; 67(2): 746-55, 2007 Jan 15.
Article in English | MEDLINE | ID: mdl-17234786

ABSTRACT

Clinical studies involving patients with myelodysplastic syndromes or multiple myeloma have shown the efficacy of lenalidomide by reducing and often eliminating malignant cells while restoring the bone marrow function. To better understand these clinical observations, we investigated and compared the effects of lenalidomide and a structurally related analogue, CC-4047, on the proliferation of two different human hematopoietic cell models: the Namalwa cancer cell line and normal CD34+ progenitor cells. Both compounds had antiproliferative effects on Namalwa cells and pro-proliferative effects on CD34+ cells, whereas p21WAF-1 expression was up-regulated in both cell types. In Namalwa cells, the up-regulation of p21WAF-1 correlated well with the inhibition of cyclin-dependent kinase (CDK) 2, CDK4, and CDK6 activity leading to pRb hypophosphorylation and cell cycle arrest, whereas in CD34+ progenitor cells the increase of p21WAF-1 did not inhibit proliferation. Similarly, antiproliferation results were observed in two B lymphoma cell lines (LP-1 and U266) but interestingly not in normal B cells where a protection of apoptosis was found. Finally, CC-4047 and lenalidomide had synergistic effects with valproic acid [a histone deacetylase (HDAC) inhibitor] by increasing the apoptosis of Namalwa cells and enhancing CD34+ cell expansion. Our results indicate that lenalidomide and CC-4047 have opposite effects in tumor cells versus normal cells and could explain, at least in part, the reduction of malignant cells and the restoration of bone marrow observed in patients undergoing lenalidomide treatment. Moreover, this study provides new insights on the cellular pathways affected by lenalidomide and CC-4047, proposes new potential clinical uses, such as bone marrow regeneration, and suggests that the combination of lenalidomide or CC-4047 with certain HDAC inhibitors may elevate the therapeutic index in the treatment of hematologic malignancies.


Subject(s)
Antigens, CD34/biosynthesis , Antineoplastic Agents/pharmacology , B-Lymphocytes/drug effects , Hematopoietic Stem Cells/drug effects , Lymphoma, B-Cell/drug therapy , Thalidomide/analogs & derivatives , B-Lymphocytes/pathology , Cell Cycle/drug effects , Cell Growth Processes/drug effects , Cell Line, Tumor , Cyclin-Dependent Kinase Inhibitor p21/biosynthesis , Cyclin-Dependent Kinase Inhibitor p21/genetics , Cyclin-Dependent Kinase Inhibitor p21/metabolism , Cyclin-Dependent Kinases/antagonists & inhibitors , Cyclin-Dependent Kinases/metabolism , Hematopoietic Stem Cells/cytology , Hematopoietic Stem Cells/immunology , Hematopoietic Stem Cells/metabolism , Humans , Lenalidomide , Lymphoma, B-Cell/genetics , Lymphoma, B-Cell/metabolism , Lymphoma, B-Cell/pathology , Phosphorylation/drug effects , Retinoblastoma Protein/metabolism , Thalidomide/pharmacology , Up-Regulation/drug effects
8.
Curr Opin Investig Drugs ; 5(12): 1268-73, 2004 Dec.
Article in English | MEDLINE | ID: mdl-15648947

ABSTRACT

Dysregulation of fundamental processes in developmental biology such as stem cell differentiation and proliferation may be the basis of many neoplastic diseases. Cancer stem cells have recently been identified in a number of malignancies, including leukemia and breast tumors. Drugs that affect differentiation, such as retinoic acid, have found therapeutic niches for the treatment of various forms of leukemia. As new understanding of stem cell biology and its role in cancer emerges, the development and application of drugs that target stem cell differentiation and cell fate will provide new therapeutic modalities for the management and treatment of malignant diseases.


Subject(s)
Antineoplastic Agents/therapeutic use , Cell Differentiation/drug effects , Neoplasms/drug therapy , Neoplasms/pathology , Animals , Antineoplastic Agents/chemistry , Humans , Signal Transduction/drug effects , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...