Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 10: 2569, 2019.
Article in English | MEDLINE | ID: mdl-31798547

ABSTRACT

Sinorhizobium fredii is a dominant rhizobium on alkaline-saline land that can induce nitrogen-fixing symbiotic root nodules in soybean. Two S. fredii strains, CCBAU25509 and CCBAU45436, were used in this study to facilitate in-depth analyses of this species and its interactions with soybean. We have previously completed the full assembly of the genomes and detailed transcriptomic analyses for these two S. fredii strains, CCBAU25509 and CCBAU45436, that exhibit differential compatibility toward some soybean hosts. In this work, we performed high-throughput Orbitrap analyses of the whole proteomes and secretomes of CCBAU25509 and CCBAU45436 at different growth stages. Our proteomic data cover coding sequences in the chromosome, chromid, symbiotic plasmid, and other accessory plasmids. In general, we found higher levels of protein expression by genes in the chromosomal genome, whereas proteins encoded by the symbiotic plasmid were differentially accumulated in bacteroids. We identified secreted proteins from the extracellular medium, including seven and eight Nodulation Outer Proteins (Nops) encoded by the symbiotic plasmid of CCBAU25509 and CCBAU45436, respectively. Differential host restriction of CCBAU25509 and CCBAU45436 is regulated by the allelic type of the soybean Rj2(Rfg1) protein. Using sequencing data from this work and available in public databases, our analysis confirmed that the soybean Rj2(Rfg1) protein has three major allelic types (Rj2/rfg1, rj2/Rfg1, rj2/rfg1) that determine the host restriction of some Bradyrhizobium diazoefficiens and S. fredii strains. A mutant defective in the type 3 protein secretion system (T3SS) in CCBAU25509 allowed this strain to nodulate otherwise-incompatible soybeans carrying the rj2/Rfg1 allelic type, probably by disrupting Nops secretion. The allelic forms of NopP and NopI in S. fredii might be associated with the restriction imposed by Rfg1. By swapping the NopP between CCBAU25509 and CCBAU45436, we found that only the strains carrying NopP from CCBAU45436 could nodulate soybeans carrying the rj2/Rfg1 allelic type. However, no direct interaction between either forms of NopP and Rfg1 could be observed.

2.
Emerg Infect Dis ; 23(11): 1852-1855, 2017 11.
Article in English | MEDLINE | ID: mdl-29048294

ABSTRACT

A new recombinant norovirus GII.P16-GII.2 outnumbered pandemic GII.4 as the predominant GII genotype in the winter of 2016-2017 in Hong Kong, China. Half of hospitalized case-patients were older children and adults, including 13 young adults. This emergent norovirus targets a wider age population compared with circulating pandemic GII.4 strains.


Subject(s)
Communicable Diseases, Emerging/epidemiology , Disease Outbreaks , Gastroenteritis/epidemiology , Norovirus/genetics , Adolescent , Adult , Aged , Caliciviridae Infections/epidemiology , Caliciviridae Infections/virology , Child , Child, Preschool , Communicable Diseases, Emerging/virology , Female , Gastroenteritis/virology , Genotype , Hong Kong/epidemiology , Humans , Infant , Male , Middle Aged , Norovirus/isolation & purification , Phylogeny , Reassortant Viruses , Seasons , Young Adult
3.
Genome Announc ; 5(20)2017 May 18.
Article in English | MEDLINE | ID: mdl-28522708

ABSTRACT

A new recombinant norovirus, GII.P16-GII.2, emerged in the winter of 2016-2017. Here, we report the complete genome of this strain (Hu/GII/HK/2016/GII.P16-GII.2/CUHK-NS-1082), which was collected from a patient hospitalized with gastroenteritis in September 2016 in Hong Kong, China, and sequenced using next-generation sequencing. This genome had a 95.2% nucleotide identity to the closest sequence in GenBank.

5.
BMC Complement Altern Med ; 12: 160, 2012 Sep 19.
Article in English | MEDLINE | ID: mdl-22992293

ABSTRACT

BACKGROUND: Our ongoing research has revealed that total saponins extracted from the medicinal herb Radix Astragali (AST) exhibits significant growth-inhibitory and proapoptotic effects in human cancer cells. In the present study, the potential of AST in controlling angiogenesis was further investigated with elaboration of the underlying molecular mechanism in human colon cancer cell and tumor xenograft. RESULTS: AST decreased the protein level of VEGF and bFGF in HCT 116 colon cancer cells in a time- and dose-dependent manner. Among the Akt/mTOR signal transduction molecules being examined, AST caused PTEN upregulation, reduction in Akt phosphorylation and subsequent activation of mTOR. AST also suppressed the induction of HIF-1α and VEGF under CoCl2-mimicked hypoxia. These effects were intensified by combined treatment of AST with the mTOR inhibitor rapamycin. Despite this, our data also indicate that AST could attenuate cobalt chloride-evoked COX-2 activation, while such effect on COX-2 and its downstream target VEGF was intensified when indomethacin was concurrently treated. The anti-carcinogenic action of AST was further illustrated in HCT 116 xenografted athymic nude mice. AST significantly suppressed tumor growth and reduced serum VEGF level in vivo. In the tumor tissues excised from AST-treated animals, protein level of p-Akt, p-mTOR, VEGF, VEGFR1 and VEGFR2 was down-regulated. Immunohistochemistry has also revealed that AST effectively reduced the level of COX-2 in tumor sections when compared with that in untreated control. CONCLUSION: Taken together, these findings suggest that AST exerts anti-carcinogenic activity in colon cancer cells through modulation of mTOR signaling and downregulation of COX-2, which together reduce VEGF level in tumor cells that could potentially suppress angiogenesis.


Subject(s)
Astragalus Plant/chemistry , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Saponins/administration & dosage , Vascular Endothelial Growth Factor A/genetics , Animals , Cell Line, Tumor , Cobalt/adverse effects , Colonic Neoplasms/chemically induced , Colonic Neoplasms/metabolism , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Down-Regulation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Hypoxia/chemically induced , Hypoxia/drug therapy , Hypoxia/genetics , Hypoxia/metabolism , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism , Vascular Endothelial Growth Factor A/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...