Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmaceutics ; 15(7)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37514151

ABSTRACT

Large-area craniofacial defects remain a challenge for orthopaedists, hastening the need to develop a facile and safe tissue engineering strategy; osteoconductive material and a combination of optimal growth factors and microenvironment should be considered. Faced with the unmet need, we propose that abundant cytokines and chemokines can be secreted from the bone defect, provoking the infiltration of endogenous stem cells to assist bone regeneration. We can provide a potent mRNA medicine cocktail to promptly initiate the formation of bone templates, osteogenesis, and subsequent bone matrix deposition via endochondral ossification, which may retard rapid fibroblast infiltration and prevent the formation of atrophic non-union. We explored the mutual interaction of BMP2 and TGFß3 mRNA, both potent chondrogenic factors, on inducing endochondral ossification; examined the influence of in vitro the transcribed polyA tail length on mRNA stability; prepared mRNA nanomedicine using a PEGylated polyaspartamide block copolymer loaded in a gelatin sponge and grafted in a critical-sized calvarial defect; and evaluated bone regeneration using histological and µCT examination. The BMP2 and TGFß3 composite mRNA nanomedicine resulted in over 10-fold new bone volume (BV) regeneration in 8 weeks than the BMP2 mRNA nanomedicine administration alone, demonstrating that the TGFß3 mRNA nanomedicine synergistically enhances the bone's formation capability, which is induced by BMP2 mRNA nanomedicine. Our data demonstrated that mRNA-medicine-mediated endochondral ossification provides an alternative cell-free tissue engineering methodology for guiding craniofacial defect healing.

2.
Nat Biomed Eng ; 6(10): 1105-1117, 2022 10.
Article in English | MEDLINE | ID: mdl-36229661

ABSTRACT

Treatments for osteoarthritis would benefit from the enhanced visualization of injured articular cartilage and from the targeted delivery of disease-modifying drugs to it. Here, by using ex vivo human osteoarthritic cartilage and live rats and minipigs with induced osteoarthritis, we report the application of collagen-binding peptides, identified via phage display, that are home to osteoarthritic cartilage and that can be detected via magnetic resonance imaging when conjugated with a superparamagnetic iron oxide. Compared with the use of peptides with a scrambled sequence, hyaluronic acid conjugated with the collagen-binding peptides displayed enhanced retention in osteoarthritic cartilage and better lubricated human osteoarthritic tissue ex vivo. Mesenchymal stromal cells encapsulated in the modified hyaluronic acid and injected intra-articularly in rats showed enhanced homing to osteoarthritic tissue and improved its regeneration. Molecular docking revealed WXPXW as the consensus motif that binds to the α1 chain of collagen type XII. Peptides that specifically bind to osteoarthritic tissue may aid the diagnosis and treatment of osteoarthritic joints.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Humans , Rats , Swine , Cartilage, Articular/diagnostic imaging , Cartilage, Articular/metabolism , Hyaluronic Acid/metabolism , Lubrication , Collagen Type XII/metabolism , Molecular Docking Simulation , Swine, Miniature , Osteoarthritis/metabolism , Regeneration , Peptides/metabolism
3.
Biomedicines ; 10(3)2022 Feb 26.
Article in English | MEDLINE | ID: mdl-35327357

ABSTRACT

(1) Background: Inexplicable low back and neck pain frequently results from spinal disc degeneration with an imbalanced intervertebral disc (IVD) cell homeostasis. We hypothesize that introducing MSC expressing a sustained cartilage-anabolic factor in the IVD may stimulate the mucoid materials secreted from the IVD cells, promote the MSC's chondrogenesis and maintain the hydration content providing mechanical strength to decelerate the disc degeneration progression; (2) Methods: This study expressed a cartilage-anabolic factor runx1 by a baculoviral vector (BV) transduced MSCs through a Cre/LoxP gene editing and recombination system for sustained recombinant runx1 transcription factor production. The Cre/LoxP BV modified MSCs were encapsulated by hyaluronan hydrogel, due to its' vital composition in ECM of a healthy disc and transplanted to a punctured coccygeal disc in rats through micro-injection, followed by X-ray radiography and histological analysis at the 4- and 12-weeks post-transplantation; (3) Results: Data reveals the Cre/LoxP BV system-mediated long-termed runx1 gene expression, possessing good biosafety characteristics in the in vitro cell transduction and in vivo MSCs transplantation, and maintained superior hydration content in the disc than that of mock transduced MSCs; (4) Conclusions: This proof-of-concept study fulfills the need of implanting therapeutic cells accompanied with microinjection in the disc, such as a discography and paves a road to manufacture composite hyaluronan, such as peptide modified hyaluronan as an MSC carrier for IVD regeneration in the future study.

4.
Int J Mol Sci ; 23(1)2022 Jan 05.
Article in English | MEDLINE | ID: mdl-35008997

ABSTRACT

Vertebral disc degenerative disease (DDD) affects millions of people worldwide and is a critical factor leading to low back and neck pain and consequent disability. Currently, no strategy has addressed curing DDD from fundamental aspects, because the pathological mechanism leading to DDD is still controversial. One possible mechanism points to the homeostatic status of extracellular matrix (ECM) anabolism, and catabolism in the disc may play a vital role in the disease's progression. If the damaged disc receives an abundant amount of cartilage, anabolic factors may stimulate the residual cells in the damaged disc to secrete the ECM and mitigate the degeneration process. To examine this hypothesis, a cartilage anabolic factor, Runx1, was expressed by mRNA through a sophisticated polyamine-based PEG-polyplex nanomicelle delivery system in the damaged disc in a rat model. The mRNA medicine and polyamine carrier have favorable safety characteristics and biocompatibility for regenerative medicine. The endocytosis of mRNA-loaded polyplex nanomicelles in vitro, mRNA delivery efficacy, hydration content, disc shrinkage, and ECM in the disc in vivo were also examined. The data revealed that the mRNA-loaded polyplex nanomicelle was promptly engulfed by cellular late endosome, then spread into the cytosol homogeneously at a rate of less than 20 min post-administration of the mRNA medicine. The mRNA expression persisted for at least 6-days post-injection in vivo. Furthermore, the Runx1 mRNA delivered by polyplex nanomicelles increased hydration content by ≈43% in the punctured disc at 4-weeks post-injection (wpi) compared with naked Runx1 mRNA administration. Meanwhile, the disc space and ECM production were also significantly ameliorated in the polyplex nanomicelle group. This study demonstrated that anabolic factor administration by polyplex nanomicelle-protected mRNA medicine, such as Runx1, plays a key role in alleviating the progress of DDD, which is an imbalance scenario of disc metabolism. This platform could be further developed as a promising strategy applied to regenerative medicine.


Subject(s)
Core Binding Factor Alpha 2 Subunit/genetics , Gene Transfer Techniques , Intervertebral Disc Degeneration/genetics , Intervertebral Disc Degeneration/therapy , Micelles , Nanoparticle Drug Delivery System , RNA, Messenger/administration & dosage , Animals , Disease Models, Animal , Endocytosis , Gene Expression , Genetic Therapy , Intervertebral Disc/diagnostic imaging , Intervertebral Disc/metabolism , Intervertebral Disc/pathology , Intervertebral Disc Degeneration/diagnostic imaging , Intervertebral Disc Degeneration/pathology , Male , Molecular Imaging , Nanomedicine , Rats , Transgenes , Treatment Outcome , X-Ray Microtomography
5.
J Control Release ; 329: 731-742, 2021 01 10.
Article in English | MEDLINE | ID: mdl-33031879

ABSTRACT

Dictamnine is an active pharmaceutical ingredient in Dictamnus dasycarpus, a Chinese herbal medicine widely used for the treatment of skin inflammations such as atopic dermatitis (AD). Oxazolone has been demonstrated to induce significant skin inflammation and produce inflammatory cytokine expression identical to that of AD. An in vitro HaCaT inflammation model treated with dictamnine, which efficiently scavenged the reactive oxygen species (ROS) and mitochondrial ROS (mROS), and it reduced interleukin-1ß (IL-1ß), tumor necrosis factor-α (TNF-α) expression, NLRP3 inflammasome activation, and NF-κB expression. To explore the anti-inflammatory mechanism of dictamnine and enhance sustained drug release and penetration into epidermal structures in a dermatitis mouse model, we prepared PLGA-nanocarrier-encapsulated dictamnine (Dic-PLGA-NC) in a specifically designed bioreactor, namely an ultrasound composite streams-impinging mixer (U-SiM). Mouse dermatitis model was treated with Dic-PLGA-NC medication, spleens were collected to evaluate body weight ratio, and skin was retrieved for histological examination and two-photon microscopy. The data demonstrate that Dic-PLGA-NC efficiently penetrated the dermal layer, making it superior to naked dictamnine; moreover, it ameliorated the dermatitis symptoms and inflammatory cytokine expression in vivo. Dic-PLGA-NC produced using the U-SiM bioreactor could be used in new manufacturing processes for drugs to treat AD.


Subject(s)
Dermatitis, Atopic , Quinolines , Animals , Cytokines , Dermatitis, Atopic/drug therapy , Disease Models, Animal , Inflammation , Mice , NF-kappa B , Oxazolone , Skin , Tumor Necrosis Factor-alpha
6.
Nanomaterials (Basel) ; 9(1)2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30621291

ABSTRACT

The specific delivery of messenger RNA (mRNA) is an excellent alternative to plasmid DNA, due to the latter's potential risk for random integration into the host genome. In this study, we propose the use of specially tailored polyplex nanomicelles for the intravenous delivery of mRNA into the brain of mice. In brief, along the backbone of a polyaspartamide polymer that is terminated with a 42k Polyethylene glycol chain (PEG), aminoethylene-repeating groups (two, three, and four units, respectively) were conjugated to side-chains to promote electrostatic interactions with mRNA. This structural configuration would ultimately condense into a polyplex nanomicelle ranging between 24 and 34 nm, as was confirmed by transmission electron microscopy (TEM) and dynamic light scattering (DLS) while the chemistry of the synthesis was validated through NMR analysis. Subsequently, we hypothesized an important correlation pertaining to the role of hydrogen bonding between the interaction of polyamine and mRNA in due course. As a proof of concept, we encapsulated the luciferase (Luc2) mRNA as a reporter gene through in vitro transcription (IVT) and subsequently infused the polyplex nanomicelles into mouse brains via an intracerebroventricular (ICV) injection to bypass the blood⁻brain barriers (BBB). Data revealed that PEGylated polyplex nanomicelles possessing four repeating units of aminoethylene groups had exhibited the best Luc2 mRNA delivery efficiency with no significant immune response registered.

SELECTION OF CITATIONS
SEARCH DETAIL
...