Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS Comput Biol ; 20(6): e1012182, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38865414

ABSTRACT

Restrictions of cross-border mobility are typically used to prevent an emerging disease from entering a country in order to slow down its spread. However, such interventions can come with a significant societal cost and should thus be based on careful analysis and quantitative understanding on their effects. To this end, we model the influence of cross-border mobility on the spread of COVID-19 during 2020 in the neighbouring Nordic countries of Denmark, Finland, Norway and Sweden. We investigate the immediate impact of cross-border travel on disease spread and employ counterfactual scenarios to explore the cumulative effects of introducing additional infected individuals into a population during the ongoing epidemic. Our results indicate that the effect of inter-country mobility on epidemic growth is non-negligible essentially when there is sizeable mobility from a high prevalence country or countries to a low prevalence one. Our findings underscore the critical importance of accurate data and models on both epidemic progression and travel patterns in informing decisions related to inter-country mobility restrictions.


Subject(s)
COVID-19 , SARS-CoV-2 , Travel , COVID-19/epidemiology , COVID-19/transmission , COVID-19/prevention & control , Humans , Scandinavian and Nordic Countries/epidemiology , Travel/statistics & numerical data , Epidemics/statistics & numerical data , Epidemics/prevention & control , Pandemics/statistics & numerical data , Pandemics/prevention & control , Prevalence , Computational Biology , Denmark/epidemiology
2.
PLoS Comput Biol ; 20(1): e1011426, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38295111

ABSTRACT

Vaccination was a key intervention in controlling the COVID-19 pandemic globally. In early 2021, Norway faced significant regional variations in COVID-19 incidence and prevalence, with large differences in population density, necessitating efficient vaccine allocation to reduce infections and severe outcomes. This study explored alternative vaccination strategies to minimize health outcomes (infections, hospitalizations, ICU admissions, deaths) by varying regions prioritized, extra doses prioritized, and implementation start time. Using two models (individual-based and meta-population), we simulated COVID-19 transmission during the primary vaccination period in Norway, covering the first 7 months of 2021. We investigated alternative strategies to allocate more vaccine doses to regions with a higher force of infection. We also examined the robustness of our results and highlighted potential structural differences between the two models. Our findings suggest that early vaccine prioritization could reduce COVID-19 related health outcomes by 8% to 20% compared to a baseline strategy without geographic prioritization. For minimizing infections, hospitalizations, or ICU admissions, the best strategy was to initially allocate all available vaccine doses to fewer high-risk municipalities, comprising approximately one-fourth of the population. For minimizing deaths, a moderate level of geographic prioritization, with approximately one-third of the population receiving doubled doses, gave the best outcomes by balancing the trade-off between vaccinating younger people in high-risk areas and older people in low-risk areas. The actual strategy implemented in Norway was a two-step moderate level aimed at maintaining the balance and ensuring ethical considerations and public trust. However, it did not offer significant advantages over the baseline strategy without geographic prioritization. Earlier implementation of geographic prioritization could have more effectively addressed the main wave of infections, substantially reducing the national burden of the pandemic.


Subject(s)
COVID-19 , Vaccines , Humans , Aged , Pandemics/prevention & control , COVID-19/epidemiology , COVID-19/prevention & control , Vaccination , Norway/epidemiology
3.
Sci Rep ; 11(1): 10605, 2021 05 19.
Article in English | MEDLINE | ID: mdl-34012040

ABSTRACT

Non-pharmaceutical interventions (NPIs) including resource allocation, risk communication, social distancing and travel restriction, are mainstream actions to control the spreading of Coronavirus disease 2019 (COVID-19) worldwide. Different countries implemented their own combinations of NPIs to prevent local epidemics and healthcare system overloaded. Portfolios, as temporal sets of NPIs have various systemic impacts on preventing cases in populations. Here, we developed a probabilistic modeling framework to evaluate the effectiveness of NPI portfolios at the macroscale. We employed a deconvolution method to back-calculate incidence of infections and estimate the effective reproduction number by using the package EpiEstim. We then evaluated the effectiveness of NPIs using ratios of the reproduction numbers and considered them individually and as a portfolio systemically. Based on estimates from Japan, we estimated time delays of symptomatic-to-confirmation and infection-to-confirmation as 7.4 and 11.4 days, respectively. These were used to correct surveillance data of other countries. Considering 50 countries, risk communication and returning to normal life were the most and least effective yielding the aggregated effectiveness of 0.11 and - 0.05 that correspond to a 22.4% and 12.2% reduction and increase in case growth. The latter is quantified by the change in reproduction number before and after intervention implementation. Countries with the optimal NPI portfolio are along an empirical Pareto frontier where mean and variance of effectiveness are maximized and minimized independently of incidence levels. Results indicate that implemented interventions, regardless of NPI portfolios, had distinct incidence reductions and a clear timing effect on infection dynamics measured by sequences of reproduction numbers. Overall, the successful suppression of the epidemic cannot work without the non-linear effect of NPI portfolios whose effectiveness optimality may relate to country-specific socio-environmental factors.


Subject(s)
COVID-19/epidemiology , COVID-19/prevention & control , Communicable Disease Control/methods , Communication , Models, Statistical , Algorithms , Basic Reproduction Number , COVID-19/economics , COVID-19/transmission , Clinical Laboratory Techniques/methods , Computer Simulation , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , Humans , Japan/epidemiology , SARS-CoV-2/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...