Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 41(42): 8848-8857, 2021 10 20.
Article in English | MEDLINE | ID: mdl-34452937

ABSTRACT

Exposure to loud noises not only leads to trauma and loss of output from the ear but also alters downstream central auditory circuits. A perceptual consequence of noise-induced central auditory disruption is impairment in gap-induced prepulse inhibition, also known as gap detection. Recent studies have implicated cortical parvalbumin (PV)-positive inhibitory interneurons in gap detection and prepulse inhibition. Here, we show that exposure to loud noises specifically reduces the density of cortical PV but not somatostatin (SOM)-positive interneurons in the primary auditory cortex in mice (C57BL/6) of both sexes. Optogenetic activation of PV neurons produced less cortical inhibition in noise-exposed than sham-exposed animals, indicative of reduced PV neuron function. Activation of SOM neurons resulted in similar levels of cortical inhibition in noise- and sham-exposed groups. Furthermore, chemogenetic activation of PV neurons with the hM3-based designer receptor exclusively activated by designer drugs completely reversed the impairments in gap detection for noise-exposed animals. These results support the notions that cortical PV neurons encode gap in sound and that PV neuron dysfunction contributes to noise-induced impairment in gap detection.SIGNIFICANCE STATEMENT Noise-induced hearing loss contributes to a range of central auditory processing deficits (CAPDs). The mechanisms underlying noise-induced CAPDs are still poorly understood. Here we show that exposure to loud noises results in dysfunction of PV-positive but not somatostatin-positive inhibitory interneurons in the primary auditory cortex. In addition, cortical PV inhibitory neurons in noise-exposed animals had reduced expression of glutamic acid decarboxylases and weakened inhibition on cortical activity. Noise exposure resulted in impaired gap detection, indicative of disrupted temporal sound processing and possibly tinnitus. We found that chemogenetic activation of cortical PV inhibitory interneurons alleviated the deficits in gap detection. These results implicate PV neuron dysfunction as a mechanism for noise-induced CAPDs.


Subject(s)
Acoustic Stimulation/adverse effects , Auditory Cortex/metabolism , Auditory Perception/physiology , Hearing Loss, Noise-Induced/metabolism , Interneurons/metabolism , Parvalbumins/metabolism , Animals , Auditory Cortex/chemistry , Female , Hearing Loss, Noise-Induced/genetics , Interneurons/chemistry , Male , Mice , Mice, 129 Strain , Mice, Transgenic , Optogenetics/methods , Parvalbumins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...