Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mod Pathol ; : 100556, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964502

ABSTRACT

Recently, low HER2 protein expression has been proposed as a predictive biomarker for response to antibody-drug conjugate trastuzumab deruxtecan (T-DXd) in metastatic breast cancer. HER2 expression in non-small cell lung cancer (NSCLC) patients has never been carefully measured, and little is known about the frequency of cases with unamplified but detectable levels of the protein. Although some HER2-targeted therapies have been studied in NSCLC patients, they have been restricted to those with genomic ERBB2 gene alterations, which only represent relatively rare cases of NSCLC. Still, emerging investigations of T-DXd in NSCLC have shown promise in patients with unamplified HER2. Taken together, we hypothesize that there may be many cases of NSCLC with levels of HER2 protein expression comparable to levels seen in breast cancer who benefit from T-DXd. Here, we used a previously validated, analytic, quantitative immunofluorescence (QIF) assay that is more sensitive than legacy clinical HER2 immunohistochemistry assays. We measured HER2 protein levels in NSCLC cases to determine the proportion of cases with detectable HER2 expression. Using cell line calibration microarrays alongside our QIF method enabled us to convert HER2 signal into units of attomoles per mm2. We found that over 63% of the 741 analyzed NSCLC cases exhibited HER2 expression above the limit of detection, with more than 17% of them exceeding the lower limit of quantification. While the threshold for response to T-DXd in breast cancer is still unknown, many cases of NSCLC have expression in a range comparable to breast cancer cases with immunohistochemistry scores of 1+ or 2+. Our assay could potentially select NSCLC cases with detectable target (i.e., HER2) that might benefit from HER2 antibody-drug conjugates, irrespective of ERBB2 genomic alterations.

2.
J Invest Dermatol ; 144(1): 106-115.e4, 2024 01.
Article in English | MEDLINE | ID: mdl-37562584

ABSTRACT

Tumors evade immunity through the overexpression of immune inhibitory molecules in the tumor microenvironment such as PD-L1/B7-H1. An immune inhibitory molecule named PD-1 homolog (also known as V-domain Ig-containing suppressor of T cell activation [VISTA]) functions to control both T cells and myeloid cells. Current clinical trials using anti-VISTA-blocking agents for treatment of cancer are ongoing. We sought to determine the extent of VISTA expression in primary cutaneous melanomas (n = 190), identify the critical cell types expressing VISTA, and correlate its expression with PD-L1 expression using multiplexed quantitative immunofluorescence. Within the tumor subcompartments, VISTA is most highly expressed on CD11b myeloid cells, and PD-L1 is most highly expressed on CD68 myeloid cells in our melanoma cohort. There is little correlation between VISTA and PD-L1 expression intensity, suggesting that individual tumors have distinct immunosuppressive tumor microenvironments. High levels of VISTA expression on CD11b myeloid cells but not PD-L1 expression were associated with greater melanoma recurrence and greater all-cause mortality. Our findings suggest that cell-specific VISTA expression may be a negative prognostic biomarker for melanoma and a future potential therapeutic target.


Subject(s)
B7-H1 Antigen , Melanoma , Humans , B7 Antigens , B7-H1 Antigen/metabolism , Melanoma/drug therapy , Programmed Cell Death 1 Receptor/metabolism , T-Lymphocytes , Tumor Microenvironment
SELECTION OF CITATIONS
SEARCH DETAIL
...