Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(24)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38139654

ABSTRACT

This paper presents a low-voltage low-power chopper-stabilized differential difference amplifier (DDA) realized using 40 nm CMOS technology. Operating with a supply voltage of 0.5 V, a three-stage DDA has been employed to achieve an open-loop gain of 89 dB, while consuming just 0.74 µW of power. The proposed DDA incorporates feed-forward frequency compensation and a Type II compensator to achieve pole-zero cancellation and damping factor control. The DDA has a unity-gain bandwidth (UGB) of 170 kHz, a phase margin (PM) of 63.98°, and a common-mode rejection ratio (CMRR) of up to 100 dB. This circuit can effectively drive a 50 pF capacitor in parallel with a 300 kΩ resistor. The use of the chopper stabilization technique effectively mitigates the offset and 1/f noise. The chopping frequency of the chopper modulator is 5 kHz. The input noise is 245 nV/sqrt (Hz) at 1 kHz, and the input-referred offset under Monte Carlo cases is only 0.26 mV. Such a low-voltage chopper-stabilized DDA will be very useful for analog signal processing applications. Compared to the reported chopper DDA counterparts, the proposed DDA is regarded as that with one of the lowest supply voltages. The proposed DDA has demonstrated its effectiveness in tradeoff design when dealing with multiple parameters pertaining to power consumption, noise, and bandwidth.

2.
Sensors (Basel) ; 22(23)2022 Dec 03.
Article in English | MEDLINE | ID: mdl-36502168

ABSTRACT

A new precision-aware subthreshold-based MOSFET voltage reference is presented in this paper. The circuit was implemented TSMC-40 nm process technology. It consumed 9.6 µW at the supply voltage of 1.2 V. In this proposed work, by utilizing subthreshold-based MOSFET instead of bipolar junction transistor (BJT), relatively lower power consumption was obtained in the design while offering comparable precision to that offered by its BJT counterpart. Through the proposed second-order compensation, it achieved the temperature coefficient (T.C.) of 3.0 ppm/°C in the TT corner case and a 200-sample Monte-Carlo T.C. of 12.51 ppm/°C from -40 °C to 90 °C. This shows robust temperature insensitivity. The process sensitivity of Vref without and with trimming was 2.85% and 0.75%, respectively. The power supply rejection (PSR) was 71.65 dB at 100 Hz and 52.54 dB at 10 MHz. The Figure-of-Merit (FOM) for the total variation in output voltage was comparable with representative BJT circuits and better than subthreshold-based MOSFET circuits. Due to low T.C., low process sensitivity, and simplicity of the circuit architecture, the proposed work will be useful for sensor circuits with stringent requirements or other analog circuits that require high precision applications.


Subject(s)
Electric Power Supplies , Equipment Design
3.
Sensors (Basel) ; 21(23)2021 Nov 25.
Article in English | MEDLINE | ID: mdl-34883860

ABSTRACT

A new power supply rejection (PSR) based enhancer with small and stable dropout voltage is presented in this work. It is implemented using TSMC-40 nm process technology and powered by 1.2 V supply voltage. A number of circuit techniques are proposed in this work. These include the temperature compensation for Level-Shifted Flipped Voltage Follower (LSFVF) and the Complementary-To-Absolute Temperature (CTAT) current reference. The typical output voltage and dropout voltage of the enhancer is 1.1127 V and 87.3 mV, respectively. The Monte-Carlo simulation of this output voltage yields a mean T.C. of 29.4 ppm/°C from -20 °C and 80 °C. Besides, the dropout voltage has been verified with good immunity against Process, Temperature and Process (PVT) variation through the worst-case simulation. Consuming only 4.75 µA, the circuit can drive load up to 500 µA to yield additional PSR improvement of 36 dB and 20 dB of PSR at 1 Hz and 1 MHz, respectively for the sensor circuit of interest. This is demonstrated through the application of an enhancer on the instrumentation Differential Difference Amplifier (DDA) for sensing floating bridge sensor signal. The comparative Monte-Carlo simulation results on a respective DDA circuit have revealed that the process sensitivity of output voltage of this work has achieved 14 times reduction in transient metrics with respect to that of the conventional counterpart over the operation temperature range in typical operation condition. Due to simplicity without voltage reference and operational amplifier(s), low power and small consumption of supply voltage headroom, the proposed work is very useful for supply noise sensitive analog or sensor circuit applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...