Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Luminescence ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38114325

ABSTRACT

Fluorescence resonance energy transfer (FRET) has been utilised to develop numerous selective and sensitive fluorescent ratiometric sensors. Typically, FRET-based fluorescent ratiometric sensors rely on chemical interactions between the sensor and analyte to illicit a response, thus unreactive hydrocarbons are a neglected analyte and a source for new sensors. By containing an unbound donor-acceptor system within micelles, energy transfer is enabled by spatial confinement. This offers the potential of a ratiometric response as a hydrocarbon analyte is added. Introducing a hydrocarbon analyte to this system causes micelles to swell, increasing the donor-acceptor distance and thus reducing the amount of observed energy transfer. We present InP/ZnS quantum dot donors interacting with a Nile Red acceptor, confined by cetyltrimethylammonium bromide (CTAB)-based micelles. We alleviated spatial confinement of the pair within micelles using common laboratory solvents to represent hydrocarbons, (toluene, hexane and octadecene). We constructed calibration curves for each solvent and found effective sensing ranges of 0.009-0.21, 0.008-0.27 and 0.003-0.06 M for toluene, hexane and octadecene, respectively. This study contributes towards the development of new hydrocarbon sensors utilising this new mechanism.

2.
ACS Appl Mater Interfaces ; 15(14): 17914-17921, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-36975316

ABSTRACT

Luminescent solar concentrators (LSCs) concentrate light via luminescence within a planar-waveguide and have potential use for building-integrated photovoltaics. However, their commercialization and potential applications are currently hindered greatly by photon reabsorption, where emitted waveguided light is parasitically reabsorbed by a luminophore. Nanotetrapod semiconductor materials have been theorized to be excellent luminophores for LSCs owing to their inherently large Stokes shifts. Here we present the first nanotetrapod-based LSCs (5 × 5 × 0.3 cm3) reported in the literature. External quantum efficiencies as high as 4.9 ± 0.5% were achieved under AM1.5G conditions. We also perform an in-depth investigation by optical characterization of the different operational metrics of our nanotetrapod-based LSCs and show reabsorption to be eliminated (mean number of average reabsorption events per photon equal to 0.00) in our most extended nanotetrapod devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...