Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Gastroenterology ; 157(6): 1615-1629.e17, 2019 12.
Article in English | MEDLINE | ID: mdl-31446059

ABSTRACT

BACKGROUND & AIMS: Some oncogenes encode transcription factors, but few drugs have been successfully developed to block their activity specifically in cancer cells. The transcription factor SALL4 is aberrantly expressed in solid tumor and leukemia cells. We developed a screen to identify compounds that reduce the viability of liver cancer cells that express high levels of SALL4, and we investigated their mechanisms. METHODS: We developed a stringent high-throughput screening platform comprising unmodified SNU-387 and SNU-398 liver cancer cell lines and SNU-387 cell lines engineered to express low and high levels of SALL4. We screened 1597 pharmacologically active small molecules and 21,575 natural product extracts from plant, bacteria, and fungal sources for those that selectively reduce the viability of cells with high levels of SALL4 (SALL4hi cells). We compared gene expression patterns of SALL4hi cells vs SALL4-knockdown cells using RNA sequencing and real-time polymerase chain reaction analyses. Xenograft tumors were grown in NOD/SCID gamma mice from SALL4hi SNU-398 or HCC26.1 cells or from SALL4lo patient-derived xenograft (PDX) cells; mice were given injections of identified compounds or sorafenib, and the effects on tumor growth were measured. RESULTS: Our screening identified 1 small molecule (PI-103) and 4 natural compound analogues (oligomycin, efrapeptin, antimycin, and leucinostatin) that selectively reduced viability of SALL4hi cells. We performed validation studies, and 4 of these compounds were found to inhibit oxidative phosphorylation. The adenosine triphosphate (ATP) synthase inhibitor oligomycin reduced the viability of SALL4hi hepatocellular carcinoma and non-small-cell lung cancer cell lines with minimal effects on SALL4lo cells. Oligomycin also reduced the growth of xenograft tumors grown from SALL4hi SNU-398 or HCC26.1 cells to a greater extent than sorafenib, but oligomycin had little effect on tumors grown from SALL4lo PDX cells. Oligomycin was not toxic to mice. Analyses of chromatin immunoprecipitation sequencing data showed that SALL4 binds approximately 50% of mitochondrial genes, including many oxidative phosphorylation genes, to activate their transcription. In comparing SALL4hi and SALL4-knockdown cells, we found SALL4 to increase oxidative phosphorylation, oxygen consumption rate, mitochondrial membrane potential, and use of oxidative phosphorylation-related metabolites to generate ATP. CONCLUSIONS: In a screening for compounds that reduce the viability of cells that express high levels of the transcription factor SALL4, we identified inhibitors of oxidative phosphorylation, which slowed the growth of xenograft tumors from SALL4hi cells in mice. SALL4 activates the transcription of genes that regulate oxidative phosphorylation to increase oxygen consumption, mitochondrial membrane potential, and ATP generation in cancer cells. Inhibitors of oxidative phosphorylation might be used for the treatment of liver tumors with high levels of SALL4.


Subject(s)
Antineoplastic Agents/pharmacology , High-Throughput Screening Assays/methods , Liver Neoplasms/drug therapy , Transcription Factors/antagonists & inhibitors , Animals , Antineoplastic Agents/therapeutic use , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/genetics , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Knockdown Techniques , Humans , Liver Neoplasms/genetics , Liver Neoplasms/pathology , Male , Mice , Oxidative Phosphorylation/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Up-Regulation/drug effects , Up-Regulation/genetics , Xenograft Model Antitumor Assays
2.
Nucleic Acids Res ; 46(15): 7953-7969, 2018 09 06.
Article in English | MEDLINE | ID: mdl-29796672

ABSTRACT

Adenosine-to-inosine (A-to-I) RNA editing entails the enzymatic deamination of adenosines to inosines by adenosine deaminases acting on RNA (ADARs). Dysregulated A-to-I editing has been implicated in various diseases, including cancers. However, the precise factors governing the A-to-I editing and their physiopathological implications remain as a long-standing question. Herein, we unravel that DEAH box helicase 9 (DHX9), at least partially dependent of its helicase activity, functions as a bidirectional regulator of A-to-I editing in cancer cells. Intriguingly, the ADAR substrate specificity determines the opposing effects of DHX9 on editing as DHX9 silencing preferentially represses editing of ADAR1-specific substrates, whereas augments ADAR2-specific substrate editing. Analysis of 11 cancer types from The Cancer Genome Atlas (TCGA) reveals a striking overexpression of DHX9 in tumors. Further, tumorigenicity studies demonstrate a helicase-dependent oncogenic role of DHX9 in cancer development. In sum, DHX9 constitutes a bidirectional regulatory mode in A-to-I editing, which is in part responsible for the dysregulated editome profile in cancer.


Subject(s)
Adenosine/metabolism , DEAD-box RNA Helicases/metabolism , Inosine/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , RNA Editing , Adenosine Deaminase/genetics , Adenosine Deaminase/metabolism , Animals , Antibiotics, Antineoplastic/pharmacology , Cell Line, Tumor , DEAD-box RNA Helicases/genetics , Deamination , Doxorubicin/pharmacology , HEK293 Cells , Humans , Mice, Inbred NOD , Mice, Knockout , Mice, SCID , Neoplasm Proteins/genetics , Neoplasms/drug therapy , Neoplasms/genetics , RNA Interference , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism , Xenograft Model Antitumor Assays/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...