Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Elife ; 72018 08 28.
Article in English | MEDLINE | ID: mdl-30152327

ABSTRACT

The 'pitchers' of carnivorous pitcher plants are exquisite examples of convergent evolution. An open question is whether the living communities housed in pitchers also converge in structure or function. Using samples from more than 330 field-collected pitchers of eight species of Southeast Asian Nepenthes and six species of North American Sarracenia, we demonstrate that the pitcher microcosms, or miniature ecosystems with complex communities, are strikingly similar. Compared to communities from surrounding habitats, pitcher communities house fewer species. While communities associated with the two genera contain different microbial organisms and arthropods, the species are predominantly from the same phylogenetic clades. Microbiomes from both genera are enriched in degradation pathways and have high abundances of key degradation enzymes. Moreover, in a manipulative field experiment, Nepenthes pitchers placed in a North American bog assembled Sarracenia-like communities. An understanding of the convergent interactions in pitcher microcosms facilitates identification of selective pressures shaping the communities.


Subject(s)
Ecosystem , Sarraceniaceae/physiology , Asia, Southeastern , Biodiversity , Chitinases/metabolism , DNA, Plant/genetics , Genes, Plant , Geography , Microbiota , Nitrogen/metabolism , North America , Phylogeny , Sarraceniaceae/genetics , Species Specificity
2.
Genome Announc ; 5(13)2017 Mar 30.
Article in English | MEDLINE | ID: mdl-28360153

ABSTRACT

Bacillus sp. is a Gram-positive bacterium that is commonly found in seawater. In this study, the genome of marine Bacillus sp. strain G3(2015) was sequenced using MiSeq. The fosfomycin resistant gene fosB was identified upon bacterial genome annotation.

3.
PeerJ ; 4: e2484, 2016.
Article in English | MEDLINE | ID: mdl-27688977

ABSTRACT

BACKGROUND: Meningitis is a major cause of mortality in tuberculosis (TB). It is not clear what factors promote central nervous system invasion and pathology but it has been reported that certain strains of Mycobacterium tuberculosis (Mtb) might have genetic traits associated with neurotropism. METHODS: In this study, we generated whole genome sequences of eight clinical strains of Mtb that were isolated from the cerebrospinal fluid (CSF) of patients presenting with tuberculous meningitis (TBM) in Malaysia, and compared them to the genomes of H37Rv and other respiratory Mtb genomes either downloaded from public databases or extracted from local sputum isolates. We aimed to find genomic features that might be distinctly different between CSF-derived and respiratory Mtb. RESULTS: Genome-wide comparisons revealed rearrangements (translocations, inversions, insertions and deletions) and non-synonymous SNPs in our CSF-derived strains that were not observed in the respiratory Mtb genomes used for comparison. These rearranged segments were rich in genes for PE (proline-glutamate)/PPE (proline-proline-glutamate), transcriptional and membrane proteins. Similarly, most of the ns SNPs common in CSF strains were noted in genes encoding PE/PPE proteins. Protein globularity differences were observed among mycobacteria from CSF and respiratory sources and in proteins previously reported to be associated with TB meningitis. Transcription factors and other transcription regulators featured prominently in these proteins. Homologs of proteins associated with Streptococcus pneumoniae meningitis and Neisseria meningitidis virulence were identified in neuropathogenic as well as respiratory mycobacterial spp. examined in this study. DISCUSSION: The occurrence of in silico genetic differences in CSF-derived but not respiratory Mtb suggests their possible involvement in the pathogenesis of TBM. However, overall findings in this comparative analysis support the postulation that TB meningeal infection is more likely to be related to the expression of multiple virulence factors on interaction with host defences than to CNS tropism associated with specific genetic traits.

4.
Int J Syst Evol Microbiol ; 66(9): 3662-3668, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27334651

ABSTRACT

A Gram-staining-negative, aerobic, yellow-orange-pigmented, rod-shaped bacterium designated D-24T was isolated from seawater from sandy shoreline in Johor, Malaysia. The 16S rRNA gene sequence analysis revealed that strain D-24T is affiliated with the genus Vitellibacter. It shared more than 96 % sequence similarity with the types of some of the validly published species of the genus: Vitellibactervladivostokensis KMM 3516T (99.5 %), Vitellibactersoesokkakensis RSSK-12T (97.3 %), VitellibacterechinoideorumCC-CZW007T (96.9 %), VitellibacternionensisVBW088T (96.7 %) and Vitellibacteraestuarii JCM 15496T (96.3 %). DNA-DNA hybridization and genome-based analysis of average nucleotide identity (ANI) of strain D-24T versus V.vladivostokensisKMM 3516T exhibited values of 35.9±0.14 % and 89.26 %, respectively. Strain D-24T showed an even lower ANI value of 80.88 % with V. soesokkakensis RSSK-12T. The major menaquinone of strain D-24T was MK-6, and the predominant fatty acids were iso-C15 : 0 and iso-C17 : 0 3-OH. Strain D-24T contained major amounts of phosphatidylethanolamine, two lipids and two aminolipids, and a phosphoglycolipid that was different to that of other species of the genus Vitellibacter. The genomic DNA G+C content was 40.6 mol%. On the basis of phenotypic properties, DNA-DNA relatedness, ANI value and chemotaxonomic analyses, strain D-24T represents a novel species of the genus Vitellibacter, for which the name Vitellibacter aquimaris sp. nov. is proposed. The type strain is D-24T (=KCTC 42708T=DSM 101732T).


Subject(s)
Flavobacteriaceae/classification , Phylogeny , Seawater/microbiology , Bacterial Typing Techniques , Base Composition , DNA, Bacterial/genetics , Fatty Acids/chemistry , Flavobacteriaceae/genetics , Flavobacteriaceae/isolation & purification , Glycolipids/chemistry , Malaysia , Nucleic Acid Hybridization , Phosphatidylethanolamines/chemistry , Pigmentation , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Vitamin K 2/analogs & derivatives , Vitamin K 2/chemistry
5.
Genom Data ; 7: 105-6, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26981378

ABSTRACT

Klebsiella pneumoniae T2-1-1 was isolated from the human tongue debris and subjected to whole genome sequencing on HiSeq platform and annotated on RAST. The nucleotide sequence of this genome was deposited into DDBJ/EMBL/GenBank under the accession JAQL00000000.

7.
Sci Rep ; 6: 20016, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26817720

ABSTRACT

Tropical carnivorous plant, Nepenthes, locally known as "monkey cup", utilises its pitcher as a passive trap to capture insects. It then secretes enzymes into the pitcher fluid to digest the insects for nutrients acquisition. However, little is known about the microbiota and their activity in its pitcher fluid. Eighteen bacteria phyla were detected from the metagenome study in the Nepenthes pitcher fluid. Proteobacteria, Bacteroidetes and Actinobacteria are the dominant phyla in the Nepenthes pitcher fluid. We also performed culturomics approach by isolating 18 bacteria from the Nepenthes pitcher fluid. Most of the bacterial isolates possess chitinolytic, proteolytic, amylolytic, and cellulolytic and xylanolytic activities. Fifteen putative chitinase genes were identified from the whole genome analysis on the genomes of the 18 bacteria isolated from Nepenthes pitcher fluid and expressed for chitinase assay. Of these, six clones possessed chitinase activity. In conclusion, our metagenome result shows that the Nepenthes pitcher fluid contains vast bacterial diversity and the culturomic studies confirmed the presence of biocatalytic bacteria within the Nepenthes pitcher juice which may act in symbiosis for the turn over of insects trapped in the Nepenthes pitcher fluid.


Subject(s)
Microbiota , Tracheophyta/microbiology , Bacteria/classification , Bacteria/genetics , Bacteria/metabolism , Biocatalysis , Genome, Bacterial , Metagenome , Metagenomics , Phylogeny
8.
Genome Announc ; 3(2)2015 Mar 05.
Article in English | MEDLINE | ID: mdl-25745000

ABSTRACT

Burkholderia spp. rely on N-acyl homoserine lactone as quorum-sensing signal molecules which coordinate their phenotype at the population level. In this work, we present the whole genome of Burkholderia sp. strain A9, which enables the discovery of its N-acyl homoserine lactone synthase gene.

9.
Genome Announc ; 3(2)2015 Mar 26.
Article in English | MEDLINE | ID: mdl-25814592

ABSTRACT

In this work, we describe the genome of Lysinibacillus sp. strain A1, which was isolated from tropical soil. Analysis of its genome sequence shows the presence of a gene encoding for a putative peptidase responsible for nitrogen compounds.

10.
ScientificWorldJournal ; 2014: 930727, 2014.
Article in English | MEDLINE | ID: mdl-25436236

ABSTRACT

Most Pseudomonas putida strains are environmental microorganisms exhibiting a wide range of metabolic capability but certain strains have been reported as rare opportunistic pathogens and some emerged as multidrug resistant P. putida. This study aimed to assess the drug resistance profile of, via whole genome analysis, P. putida strain T2-2 isolated from oral cavity. At the same time, we also compared the nonenvironmental strain with environmentally isolated P. putida. In silico comparative genome analysis with available reference strains of P. putida shows that T2-2 has lesser gene counts on carbohydrate and aromatic compounds metabolisms, which suggested its little versatility. The detection of its edd gene also suggested T2-2's catabolism of glucose via ED pathway instead of EMP pathway. On the other hand, its drug resistance profile was observed via in silico gene prediction and most of the genes found were in agreement with drug-susceptibility testing in laboratory by automated VITEK 2. In addition, the finding of putative genes of multidrug resistance efflux pump and ATP-binding cassette transporters in this strain suggests a multidrug resistant phenotype. In summary, it is believed that multiple metabolic characteristics and drug resistance in P. putida strain T2-2 helped in its survival in human oral cavity.


Subject(s)
Adaptation, Physiological/genetics , Comparative Genomic Hybridization/methods , Drug Resistance, Multiple, Bacterial/genetics , Genome, Bacterial/genetics , Mouth/microbiology , Pseudomonas putida/genetics , Humans
11.
Genome Announc ; 2(6)2014 Dec 24.
Article in English | MEDLINE | ID: mdl-25540357

ABSTRACT

Aeromonas hydrophila is a quorum-sensing (QS) bacterium that causes diarrhea in humans upon infection. Here, we report the genome of pathogenic Aeromonas hydrophila strain 187, which possesses a QS gene responsible for signaling molecule N-acyl homoserine lactone (AHL) synthesis and has been found to be located at contig 36.

12.
Sensors (Basel) ; 14(7): 11760-9, 2014 Jul 03.
Article in English | MEDLINE | ID: mdl-24995373

ABSTRACT

We report the degradation of quorum sensing N-acylhomoserine lactone molecules by a bacterium isolated from a Malaysian marine water sample. MALDI-TOF and phylogenetic analysis indicated this isolate BM1 clustered closely to Labrenzia sp. The quorum quenching activity of this isolate was confirmed by using a series of bioassays and rapid resolution liquid chromatography analysis. Labrenzia sp. degraded a wide range of N-acylhomoserine lactones namely N-(3-hexanoyl)-L-homoserine lactone (C6-HSL), N-(3-oxohexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-L-homoserine lactone (3-hydroxy-C6-HSL). Re-lactonisation bioassays confirmed Labrenzia sp. BM1 degraded these signalling molecules efficiently via lactonase activity. To the best of our knowledge, this is the first documentation of a Labrenzia sp. capable of degrading N-acylhomoserine lactones and confirmation of its lactonase-based mechanism of action.


Subject(s)
Acyl-Butyrolactones/metabolism , Alphaproteobacteria/classification , Alphaproteobacteria/physiology , Carboxylic Ester Hydrolases/metabolism , Quorum Sensing/physiology , Signal Transduction/physiology , Alphaproteobacteria/isolation & purification , Enzyme Activation , Species Specificity
13.
Genome Announc ; 2(2)2014 Apr 17.
Article in English | MEDLINE | ID: mdl-24744329

ABSTRACT

Pseudomonas aeruginosa has a broad range of habitation, from aquatic environments to human lungs. The coexistence of quorum-sensing and quorum-quenching activities occurs in P. aeruginosa strain MW3a. In this work, we present the draft genome sequence of P. aeruginosa MW3a, an interesting bacterium isolated from a marine environment.

14.
Sensors (Basel) ; 14(4): 6463-73, 2014 Apr 09.
Article in English | MEDLINE | ID: mdl-24721765

ABSTRACT

Two microbial isolates from a Malaysian shoreline were found to be capable of degrading N-acylhomoserine lactones. Both Matrix Assisted Laser Desorption Ionization-Time of Flight-Mass Spectrometry and 18S rDNA phylogenetic analyses confirmed that these isolates are Rhodotorula mucilaginosa. Quorum quenching activities were detected by a series of bioassays and rapid resolution liquid chromatography analysis. The isolates were able to degrade various quorum sensing molecules namely N-hexanoyl-L-homoserine lactone (C6-HSL), N-(3-oxo-hexanoyl)-L-homoserine lactone (3-oxo-C6-HSL) and N-(3-hydroxyhexanoyl)-L-homoserine lactone (3-hydroxy-C6-HSL). Using a relactonisation assay to verify the quorum quenching mechanism, it is confirmed that Rh. mucilaginosa degrades the quorum sensing molecules via lactonase activity. To the best of our knowledge, this is the first documentation of the fact that Rh. mucilaginosa has activity against a broad range of AHLs namely C6-HSL, 3-oxo-C6-HSL and 3-hydroxy-C6-HSL.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Ecosystem , Quorum Sensing , Rhodotorula/enzymology , Rhodotorula/isolation & purification , Tropical Climate , Acyl-Butyrolactones/metabolism , Chromatography, Liquid , Phylogeny
15.
Gut Pathog ; 5(1): 29, 2013 Oct 22.
Article in English | MEDLINE | ID: mdl-24148830

ABSTRACT

BACKGROUND: Serratia marcescens is an opportunistic bacterial pathogen with broad range of host ranging from vertebrates, invertebrates and plants. S. marcescens strain W2.3 was isolated from a diseased tilapia fish and it was suspected to be the causal agent for the fish disease as virulence genes were found within its genome. In this study, for the first time, the genome sequences of S. marcescens strain W2.3 were sequenced using the Illumina MiSeq platform. RESULT: Several virulent factors of S. marcescens such as serrawettin, a biosurfactant, has been reported to be regulated by N-acyl homoserine lactone (AHL)-based quorum sensing (QS). In our previous studies, an unusual AHL with long acyl side chain was detected from this isolate suggesting the possibility of novel virulence factors regulation. This evokes our interest in the genome of this bacterial strain and hereby we present the draft genome of S. marcescens W2.3, which carries the serrawettin production gene, swrA and the AHL-based QS transcriptional regulator gene, luxR which is an orphan luxR. CONCLUSION: With the availability of the whole genome sequences of S. marcescens W2.3, this will pave the way for the study of the QS-mediated genes expression in this bacterium.

16.
Genome Announc ; 1(4)2013 Aug 15.
Article in English | MEDLINE | ID: mdl-23950114

ABSTRACT

Tropical seawater harbors a rich diversity of microorganisms as a result of its nutrient-rich environment, constant supply of sufficient sunlight, and warm climate. In this report, we present the complexity of the microbial diversity of the surface seawater of the Georgetown coast as determined using next-generation sequencing technology.

17.
Sensors (Basel) ; 12(11): 14307-14, 2012 Oct 24.
Article in English | MEDLINE | ID: mdl-23202161

ABSTRACT

We report the isolation of N-acyl homoserine lactone-producing Enterobacter sp. isolate T1-1 from the posterior dorsal surfaces of the tongue of a healthy individual. Spent supernatants extract from Enterobacter sp. isolate T1-1 activated the biosensor Agrobacterium tumefaciens NTL4(pZLR4), suggesting production of long chain AHLs by these isolates. High resolution mass spectrometry analysis of these extracts confirmed that Enterobacter sp. isolate T1-1 produced a long chain N-acyl homoserine lactone, namely N-dodecanoyl-homoserine lactone (C12-HSL). To the best of our knowledge, this is the first isolation of Enterobacter sp., strain T1-1 from the posterior dorsal surface of the human tongue and N-acyl homoserine lactones production by this bacterium.


Subject(s)
4-Butyrolactone/analogs & derivatives , Enterobacter/metabolism , Tongue/microbiology , 4-Butyrolactone/biosynthesis , Humans , Mass Spectrometry
18.
J Bacteriol ; 194(22): 6350, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23105081

ABSTRACT

Aeromonas is a pathogenic organism that is often found to infect humans. Here we report the draft genome of a clinical isolate in Malaysia, Aeromonas sp. strain 159, which shows N-acylhomoserine lactone production. In the draft genome of strain 159, luxI and luxR homologue genes were found to be located at contig 47, and these genes are believed to be important for the quorum-sensing system present in this pathogen.


Subject(s)
Aeromonas/classification , Aeromonas/genetics , Genome, Bacterial , Quorum Sensing/physiology , Aeromonas/physiology , Molecular Sequence Data
19.
PLoS One ; 7(8): e44034, 2012.
Article in English | MEDLINE | ID: mdl-22952864

ABSTRACT

Growth-dependent cell-cell communication termed quorum sensing is a key regulatory system in bacteria for controlling gene expression including virulence factors. In this study five potential bacterial pathogens including Bacillus sp. W2.2, Klebsiella sp. W4.2, Pseudomonas sp. W3 and W3.1 and Serratia sp. W2.3 were isolated from diseased Tilapia fish in Malaysia, supplied by the leading global fish supplier. Proteolytic activity assays confirmed that with the exception of Klebsiella sp. W4.2, all isolates showed distinct proteolytic activity. Furthermore Bacillus sp. W2.2 and Pseudomonas sp. strains W3 and W3.1 also displayed haemolytic activity. By using high resolution liquid chromatography mass spectrometry, we revealed the presence of unusually long-chain N-(3-oxohexadecanoyl)-homoserine lactone (3-oxo-C16-HSL) from Pseudomonas sp. W3.1 and N-dodecanoyl-homoserine lactone (C12-HSL) from Serratia sp. W2.3, respectively. Interestingly, Pseudomonas sp. W3.1 also produced a wide range of Pseudomonas quinolone signalling (PQS) molecules. Pseudomonas sp. W3 did not show any quorum sensing properties but possessed quorum quenching activity that inactivated AHLs. This study is the first documentation that shows unusual long-chain AHLs production in Serratia sp. and Pseudomonas sp. isolated from diseased fish and the latter also produce a wide range of PQS molecules.


Subject(s)
Acyl-Butyrolactones/metabolism , Bacteria/cytology , Bacteria/isolation & purification , Fish Diseases/microbiology , Quorum Sensing , Tilapia/microbiology , Acyl-Butyrolactones/chemistry , Animals , Bacteria/metabolism , Bacteria/pathogenicity , Base Sequence , Biosensing Techniques , Chromatography, Thin Layer , DNA, Ribosomal/genetics , Extracellular Space/drug effects , Extracellular Space/enzymology , Malaysia , Mass Spectrometry , Phenotype , Phylogeny , Virulence Factors/metabolism
20.
Sensors (Basel) ; 12(3): 3472-83, 2012.
Article in English | MEDLINE | ID: mdl-22737019

ABSTRACT

Bacteria communicate by producing quorum sensing molecules called autoinducers, which include autoinducer-1, an N-hexanoyl homoserine lactone (AHL), and autoinducer-2. Bacteria present in the human oral cavity have been shown to produce autoinducer-2, but not AHL. Here, we report the isolation of two AHL-producing Klebsiella pneumoniae strains from the posterior dorsal surface of the tongue of a healthy individual. Spent culture supernatant extracts from K. pneumoniae activated the biosensors Agrobacterium tumefaciens NTL4(pZLR4) and Escherichia coli [pSB401], suggesting the presence of both long and short chain AHLs. High resolution mass spectrometry analyses of these extracts confirmed that both K. pneumoniae isolates produced N-octanoylhomoserine lactone and N-3-dodecanoyl-L-homoserine lactone. To the best of our knowledge, this is the first report of the isolation of K. pneumoniae from the posterior dorsal surface of the human tongue and the production of these AHLs by this bacterium.


Subject(s)
Acyl-Butyrolactones/metabolism , Klebsiella pneumoniae/isolation & purification , Tongue/microbiology , Acyl-Butyrolactones/chemistry , Chromatography, Thin Layer , DNA, Ribosomal/genetics , DNA, Ribosomal/metabolism , Homoserine/analogs & derivatives , Homoserine/chemistry , Homoserine/metabolism , Humans , Klebsiella pneumoniae/classification , Klebsiella pneumoniae/metabolism , Lactones/chemistry , Lactones/metabolism , Spectrometry, Mass, Electrospray Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...