Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Commun Signal ; 21(1): 81, 2023 04 20.
Article in English | MEDLINE | ID: mdl-37081542

ABSTRACT

BACKGROUND: Both IGF-1R/PI3K/AKT/mTOR and Hippo pathways are crucial for breast cancer stem cells (BCSCs). However, their interplay remains unclear. METHODS: Four triple negative breast cancer cell lines derived from CSC of two patient-derived xenografts (PDXs), AS-B145, AS-B145-1R, AS-B244, and AS-B244-1R, were used to elucidate the role of YAP in BCSCs. YAP silenced BCSCs were analyzed by cell proliferation, aldehyde dehydrogenase (ALDH) activity, mammosphere formation, and tumorigenesis. The effects of modulating IGF-1R and IGF-1 on YAP expression and localization were evaluated. The clinical correlation of YAP and IGF-1R signaling with the overall survival (OS) of 7830 breast cancer patients was analyzed by KM plotter. RESULTS: Knockdown of YAP abates the viability and stemness of BCSCs in vitro and tumorigenicity in vivo. Depletion of IGF-1R by shRNA or specific inhibitor decreases YAP expression. In contrast, IGF-1 addition upregulates YAP and enhances its nuclear localization. YAP overexpression increased the mRNA level of IGF-1, but not IGF-1R. Data mining of clinical breast cancer specimens revealed that basal-like breast cancer patients with higher level of IGF-1 and YAP exhibit significantly shorter OS. CONCLUSIONS: YAP contributes to stemness features of breast cancer in vitro and in vivo. The expression and localization of YAP was regulated by IGF-1R and YAP expression in turns upregulates IGF-1, but not IGF-1R. Clinically, higher level of YAP and IGF-1 significantly correlated with shorter OS in basal-like breast cancer. Taken together, these findings suggest the clinical relevance of interplay between YAP and IGF-1/IGF-1R pathway in sustaining the properties of BCSCs. Video Abstract.


Subject(s)
Breast Neoplasms , Triple Negative Breast Neoplasms , Female , Humans , Breast Neoplasms/metabolism , Cell Line, Tumor , Hippo Signaling Pathway , Neoplastic Stem Cells/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Triple Negative Breast Neoplasms/metabolism
2.
Oncogene ; 40(16): 2858-2871, 2021 04.
Article in English | MEDLINE | ID: mdl-33742122

ABSTRACT

Cancer stem cells (CSC) play a pivotal role in cancer metastasis and resistance to therapy. Previously, we compared the phosphoproteomes of breast cancer stem cells (BCSCs) enriched subpopulation and non-BCSCs sorted from breast cancer patient-derived xenograft (PDX), and identified a function unknown protein, transmembrane and coiled-coil domain family 3 (TMCC3) to be a potential enrichment marker for BCSCs. We demonstrated greater expression of TMCC3 in BCSCs than non-BCSCs and higher expression of TMCC3 in metastatic lymph nodes and lungs than in primary tumor of breast cancer PDXs. TMCC3 silencing suppressed mammosphere formation, ALDH activity and cell migration in vitro, along with reduced tumorigenicity and metastasis in vivo. Mechanistically, we found that AKT activation was reduced by TMCC3 silencing, but enhanced by TMCC3 overexpression. We further demonstrated that TMCC3 interacted directly with AKT through its 1-153 a.a. domain by cell-free biochemical assay in vitro and co-immunoprecipitation and interaction domain mapping assays in vivo. Based on domain truncation studies, we showed that the AKT-interacting domain of TMCC3 was essential for TMCC3-induced AKT activation, self-renewal, and metastasis. Clinically, TMCC3 mRNA expression in 202 breast cancer specimens as determined by qRT-PCR assay showed that higher TMCC3 expression correlated with poorer clinical outcome of breast cancer, including early-stage breast cancer. Multivariable analysis identified TMCC3 expression as an independent risk factor for survival. These findings suggest that TMCC3 is crucial for maintenance of BCSCs features through AKT regulation, and TMCC3 expression has independent prognostic significance in breast cancer. Thus, TMCC3 may serve as a new target for therapy directed against CSCs.


Subject(s)
Breast Neoplasms/metabolism , Membrane Proteins/metabolism , Neoplastic Stem Cells/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Female , Heterografts , Humans , Membrane Proteins/genetics , Mice , Oncogenes , Proto-Oncogene Proteins c-akt/genetics , Risk Factors
3.
Int J Cancer ; 146(6): 1674-1685, 2020 03 15.
Article in English | MEDLINE | ID: mdl-31340060

ABSTRACT

G protein-coupled estrogen receptor-1 (GPER), a member of the G protein-coupled receptor (GPCR) superfamily, mediates estrogen-induced proliferation of normal and malignant breast epithelial cells. However, its role in breast cancer stem cells (BCSCs) remains unclear. Here we showed greater expression of GPER in BCSCs than non-BCSCs of three patient-derived xenografts of ER- /PR+ breast cancers. GPER silencing reduced stemness features of BCSCs as reflected by reduced mammosphere forming capacity in vitro, and tumor growth in vivo with decreased BCSC populations. Comparative phosphoproteomics revealed greater GPER-mediated PKA/BAD signaling in BCSCs. Activation of GPER by its ligands, including tamoxifen (TMX), induced phosphorylation of PKA and BAD-Ser118 to sustain BCSC characteristics. Transfection with a dominant-negative mutant BAD (Ser118Ala) led to reduced cell survival. Taken together, GPER and its downstream signaling play a key role in maintaining the stemness of BCSCs, suggesting that GPER is a potential therapeutic target for eradicating BCSCs.


Subject(s)
Breast Neoplasms/pathology , Neoplastic Stem Cells/pathology , Receptors, Estrogen/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Breast/pathology , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Female , Gene Knockdown Techniques , Humans , Mice , Phosphorylation/drug effects , Receptors, Estrogen/genetics , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/genetics , Receptors, Progesterone/metabolism , Signal Transduction/drug effects , Spheroids, Cellular , Tamoxifen/pharmacology , Xenograft Model Antitumor Assays , bcl-Associated Death Protein/metabolism
4.
PLoS One ; 8(12): e82751, 2013.
Article in English | MEDLINE | ID: mdl-24358224

ABSTRACT

Recent studies have demonstrated a potent anticancer potential of medicinal fungus Antrodia cinnamomea, especially against hepatocarcinoma. These studies, however, were performed with prolonged treatments, and the early anticancer events remain missing. To probe the early anticancer mechanisms of A. cinnamomea, we treated SK-Hep-1 liver cancer cell with A. cinnamomea fruiting body extract for 2 and 4 hours, sequenced RNA samples with next-generation sequencing approach, and profiled the genome-wide miRNA and mRNA transcriptomes. Results unmistakably associated the early anticancer effect of A. cinnamomea fruiting body extract with a global downregulation of miRNAs which occurred solely in the A. cinnamomea fruiting body extract-treated SK-Hep-1 cells. Moreover, the inhibitory effect of A. cinnamomea fruiting body extract upon cancer miRNAs imposed no discrimination against any particular miRNA species, with oncomirs miR-21, miR-191 and major oncogenic clusters miR-17-92 and miR-106b-25 among the most severely downregulated. Western blotting further indicated a decrease in Drosha and Dicer proteins which play a key role in miRNA biogenesis, together with an increase of XRN2 known to participate in miRNA degradation pathway. Transcriptome profiling followed by GO and pathway analyses indicated that A. cinnamomea induced apoptosis, which was tightly associated with a downregulation of PI3K/AKT and MAPK pathways. Phosphorylation assay further suggested that JNK and c-Jun were closely involved in the apoptotic process. Taken together, our data indicated that the anticancer effect of A. cinnamomea can take place within a few hours by targeting multiple proteins and the miRNA system. A. cinnamomea indiscriminately induced a global downregulation of miRNAs by simultaneously inhibiting the key enzymes involved in miRNA maturation and activating XRN2 protein involved in miRNA degradation. Collapsing of the miRNA system together with downregulation of cell growth and survival pathways and activation of JNK signaling unleash the extrinsic and intrinsic apoptosis pathways, leading to the cancer cell death.


Subject(s)
Antrodia/chemistry , Carcinoma, Hepatocellular/genetics , Complex Mixtures/pharmacology , Liver Neoplasms/genetics , MicroRNAs/genetics , Carcinoma, Hepatocellular/pathology , Fruiting Bodies, Fungal/chemistry , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Humans , Liver Neoplasms/pathology , Transcriptome/drug effects , Tumor Cells, Cultured
5.
PLoS One ; 8(3): e58169, 2013.
Article in English | MEDLINE | ID: mdl-23472152

ABSTRACT

It has been shown that imprecise cleavage of a primary or precursor RNA by Drosha or Dicer, respectively, may yield a group of microRNA (miRNA) variants designated as "isomiR". Variations in the relative abundance of isoforms for a given miRNA among different species and different cell types beg the question whether these isomiRs might regulate target genes differentially. We compared the capacity of three miR-31 isoforms (miR-31-H, miR-31-P, and miR-31-M), which differ only slightly in their 5'- and/or 3'-end sequences, to regulate several known targets and a predicted target, Dicer. Notably, we found isomiR-31s displayed concordant and discordant regulation of 6 known target genes. Furthermore, we validated a predicted target gene, Dicer, to be a novel target of miR-31 but only miR-31-P could directly repress Dicer expression in both MCF-7 breast cancer cells and A549 lung cancer cells, resulting in their enhanced sensitivity to cisplatin, a known attribute of Dicer knockdown. This was further supported by reporter assay using full length 3'-untranslated region (UTR) of Dicer. Our findings not only revealed Dicer to be a direct target of miR-31, but also demonstrated that isomiRs displayed similar and disparate regulation of target genes in cell-based systems. Coupled with the variations in the distribution of isomiRs among different cells or conditions, our findings support the possibility of fine-tuning gene expression by miRNAs.


Subject(s)
DEAD-box RNA Helicases/genetics , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , Ribonuclease III/genetics , 3' Untranslated Regions , Cisplatin/pharmacology , Drug Resistance, Neoplasm , Gene Expression Profiling , Genetic Variation , High-Throughput Nucleotide Sequencing , Humans , Luciferases , MCF-7 Cells , Oligonucleotides/genetics , Plasmids , Protein Isoforms/metabolism , RNA, Messenger/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...