Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 166
Filter
1.
Nano Lett ; 24(26): 7972-7978, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38888269

ABSTRACT

Despite the weak, van der Waals interlayer coupling, photoinduced charge transfer vertically across atomically thin interfaces can occur within surprisingly fast, sub-50 fs time scales. An early theoretical understanding of charge transfer is based on a noninteracting picture, neglecting excitonic effects that dominate optical properties of such materials. We employ an ab initio many-body perturbation theory approach, which explicitly accounts for the excitons and phonons in the heterostructure. Our large-scale first-principles calculations directly probe the role of exciton-phonon coupling in the charge dynamics of the WS2/MoS2 heterobilayer. We find that the exciton-phonon interaction induced relaxation time of photoexcited excitons at the K valley of MoS2 and WS2 is 67 and 15 fs at 300 K, respectively, which sets a lower bound to the intralayer-to-interlayer exciton transfer time and is consistent with experiment reports. We further show that electron-hole correlations facilitate novel transfer pathways that are otherwise inaccessible to noninteracting electrons and holes.

2.
Article in English | MEDLINE | ID: mdl-38661516

ABSTRACT

Aims: Hypopharyngeal cancer (HPC) is associated with the worst prognosis of all head and neck cancers and is typically identified in an advanced stage at the time of diagnosis. While oxidative stress might contribute to the onset of HPC in patients using tobacco or alcohol, the extent of this influence and the characteristics of HPC cells in advanced stage remain to be investigated. In this study, we explored whether HPC cells survived from necrotic xenograft tumors at late stage would display increased tumor resistance along with altered tolerance to oxidative stress. Results: The remnant living HPC cells isolated from a late-stage xenograft tumor, named FaDu ex vivo cells, showed stronger chemo- and radioresistance, tumorigenesis, and invasiveness compared with parental FaDu cells. FaDu ex vivo cells also displayed increased angiogenic ability after re-transplantation in mice visualized by in vivo near infrared-II fluorescence imaging modality. Moreover, FaDu ex vivo cells exhibited significant tumor-initiating cell (TIC)-related properties accompanied by a reduction of the level of reactive oxygen species, which was associated with the upregulation of transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). Interestingly, inhibition of Nrf2 by the RNA interference and the chemical inhibitor could reduce the TIC-related properties of FaDu ex vivo cells. Innovation: Oxidative stress potentially initiates HPC, but elevation of Nrf2-associated antioxidant mechanisms would be essential to mitigate this effect for promoting and sustaining the stemness of HPC at the advanced stage. Conclusion: Present data suggest that the antioxidant potency of advanced HPC would be a therapeutic target for the design of adjuvant treatment.

3.
Adv Healthc Mater ; : e2400606, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38683681

ABSTRACT

Emerging organic molecules with emissions in the second near-infrared (NIR-II) region are garnering significant attention. Unfortunately, achieving accountable organic emission intensity over the NIR-IIa (1300 nm) region faces challenges due to the intrinsic energy gap law. Up to the current stage, all reported organic NIR-IIa emitters belong to polymethine-based dyes with small Stokes shifts (<50 nm) and low quantum yield (QY; ≤0.015%). However, such polymethines have proved to cause self-absorption with constrained emission brightness, limiting advanced development in deep-tissue imaging. Here a new NIR-IIa scaffold based on rigid and highly conjugated dibenzofluoran core terminated by amino-containing moieties that reveal emission peaks of 1230-1305 nm is designed. The QY is at least 10 times higher than all synthesized or reported NIR-IIa polymethines with extraordinarily large Stokes shifts of 370-446 nm. DBF-BJ is further prepared as a polymer dot to demonstrate its in vivo 3D stereo imaging of mouse vasculature with a 1400 nm long-pass filter.

4.
ACS Nano ; 18(14): 10243-10248, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38530641

ABSTRACT

Composite topological heterostructures, wherein topologically protected states are electronically tuned due to their proximity to other matter, are key avenues for exploring emergent physical phenomena. Particularly, pairing a topological material with a superconductor such as Pb is a promising means for generating a topological superconducting phase with exotic Majorana quasiparticles, but oft-neglected is the emergence of bulklike spin-polarized states that are quite relevant to applications. Using high-resolution photoemission spectroscopy and first-principles calculations, we report the emergence of bulk-like spin-polarized topological quantum well states with long coherence lengths in Pb films grown on the topological semimetal Sb. The results establish Pb/Sb heterostructures as topological superconductor candidates and advance the current understanding of topological coupling effects required for realizing emergent physics and for designing advanced spintronic device architectures.

5.
N Engl J Med ; 390(2): e4, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38198185
6.
Acta Cardiol Sin ; 40(1): 70-76, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38264079

ABSTRACT

Objectives: CentriMag® (Abbott, Pleasanton, CA, USA) is indicated for temporary circulatory support for up to 30 days. Extended support is not uncommon, and the results vary considerably. Herein, we review our experience on extended support. Methods: We retrospectively analyzed 19 patients supported with CentriMag as a bridge to recovery, long-term ventricular assist device or transplantation from September 2011 to October 2021. Results: Nineteen patients (16 men and 3 women; mean age 51.7 ± 9.2 years) had CentriMag left ventricular assist device (LVAD) implantation with the skirted-cannula technique. Twelve (63.2%), 6 (31.6%), and 1 (5.3%) patient were in INTERMACS 1, 2, and 3, respectively. The aims of support were bridge-to-decision in 3 patients (15.8%), and bridge-to-transplantation in 16 patients (84.2%). Fourteen patients were supported for longer than 30 days, while 5 patients had their CentriMag removed before 30 days. Of the 5 patients supported for less than 30 days, 3 died early after implantation due to complications of prolonged shock. The other 2 patients were successfully transplanted. Among the 14 patients supported for longer than 30 days, 1 patient died after transplantation and 13 patients survived either after transplantation or weaning off CentriMag. The overall 1-year survival rate was 73.7%. The duration of support for all patients ranged from 6 to 191 days (64 ± 61 days; median 41 days). Conclusions: The skirted cannula technique for apical cannulation in implantation of CentriMag LVAD is an easy, safe and durable technique. Immediate post-operative and long-term complications are not common. Its use over 30 days is associated with acceptable survival.

7.
Adv Mater ; 36(7): e2309356, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38010877

ABSTRACT

Coulomb interactions among electrons and holes in 2D semimetals with overlapping valence and conduction bands can give rise to a correlated insulating ground state via exciton formation and condensation. One candidate material in which such excitonic state uniquely combines with non-trivial band topology are atomic monolayers of tungsten ditelluride (WTe2 ), in which a 2D topological excitonic insulator (2D TEI) forms. However, the detailed mechanism of the 2D bulk gap formation in WTe2 , in particular with regard to the role of Coulomb interactions, has remained a subject of ongoing debate. Here, it shows that WTe2 is susceptible to a gate-tunable quantum phase transition, evident from an abrupt collapse of its 2D bulk energy gap upon ambipolar field-effect doping. Such gate tunability of a 2D TEI, into either n- and p-type semimetals, promises novel handles of control over non-trivial 2D superconductivity with excitonic pairing.

8.
Proc Natl Acad Sci U S A ; 120(51): e2314775120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38085781

ABSTRACT

Transition metal dichalcogenide (TMD) moiré superlattices provide an emerging platform to explore various light-induced phenomena. Recently, the discoveries of novel moiré excitons have attracted great interest. The nonlinear optical responses of these systems are however still underexplored. Here, we report investigation of light-induced shift currents (a second-order response generating DC current from optical illumination) in the WSe2/WS2 moiré superlattice. We identify a striking phenomenon of the formation of shift current vortex crystals-i.e., two-dimensional periodic arrays of moiré-scale current vortices and associated magnetic fields with remarkable intensity under laboratory laser setup. Furthermore, we demonstrate high optical tunability of these current vortices-their location, shape, chirality, and magnitude can be tuned by the frequency, polarization, and intensity of the incident light. Electron-hole interactions (excitonic effects) are found to play a crucial role in the generation and nature of the shift current intensity and distribution. Our findings provide a promising all-optical control route to manipulate nanoscale shift current density distributions and magnetic field patterns, as well as shed light on nonlinear optical responses in moiré quantum matter and their possible applications.

9.
Phys Rev Lett ; 131(23): 236904, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38134768

ABSTRACT

Optical dynamics in van der Waals heterobilayers is of fundamental scientific and practical interest. Based on a time-dependent adiabatic GW approach, we discover a new many-electron (excitonic) channel for converting photoexcited intralayer to interlayer excitations and the associated ultrafast optical responses in heterobilayers, which is conceptually different from the conventional single-particle picture. We find strong electron-hole interactions drive the dynamics and enhance the pump-probe optical responses by an order of magnitude with a rise time of ∼300 fs in MoSe_{2}/WSe_{2} heterobilayers, in agreement with experiment.

11.
Ann Surg Oncol ; 30(13): 8419-8427, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37605084

ABSTRACT

BACKGROUND: Near-infrared (NIR) fluorescence-guided surgery with indocyanine green (ICG) has been demonstrated to provide high sensitivity in sentinel lymph node biopsy (SLNB) for breast cancer but has several limitations, such as unstable pharmacokinetics, limited fluorescence brightness, and undesired diffusion to neighboring tissues. This paper investigates the use of Voluven® as the solvent for ICG fluorescence-guided SLNB (ICG-SLNB). METHODS: The photophysical properties of ICG in water and Voluven® were evaluated in laboratory experiments and in a mouse model. Nine patients with early breast cancer underwent subareolar injection of diluted ICG (0.25 mg/ml) for ICG-SLNB. Six of the nine patients received ICG dissolved in Voluven® (ICG:Voluven®), while three were administered ICG dissolved in water (ICG:water); a repetitive injection-observation protocol was followed for all patients. The mapping image quality was evaluated. RESULTS: Laboratory experiments and in vivo mouse study showed improved fluorescence and better targeting using Voluven® as the solvent. ICG-SLNB with a repetitive injection-observation protocol was successfully performed in all nine patients. ICG:Voluven® administration had an overall better signal-to-background ratio (SBR) in sequential sentinel lymph nodes. The rates of transportation within the lymphatics were also improved using ICG:Voluven® compared with ICG:water. CONCLUSIONS: From basic research to animal models to in-human trial, our study proposes a repetitive injection-observation technique with ICG:Voluven®, which is characterized by better transportation and more stable mapping quality for ICG-SLNB in breast cancer patients.


Subject(s)
Breast Neoplasms , Sentinel Lymph Node , Humans , Animals , Mice , Female , Indocyanine Green , Sentinel Lymph Node/pathology , Breast Neoplasms/surgery , Fluorescence , Sentinel Lymph Node Biopsy/methods , Solvents , Water , Coloring Agents , Lymph Nodes/pathology
12.
Chem Commun (Camb) ; 59(66): 9968-9971, 2023 Aug 15.
Article in English | MEDLINE | ID: mdl-37501643

ABSTRACT

We designed polymer dot-magnetic nanoparticle nanohybrids for signal enhancement in a test strip platform. Besides, the multicolor emissions of the Pdots embed multiplexing ability for this test strip. Two mycotoxins, aflatoxin B1 and zearalenone, were tested with the determined limits of detection of 2.15 ng mL-1 and 4.87 ng mL-1, respectively.


Subject(s)
Magnetite Nanoparticles , Mycotoxins , Zearalenone , Mycotoxins/analysis , Polymers , Immunoassay , Limit of Detection , Aflatoxin B1/analysis , Food Contamination/analysis
13.
Nano Lett ; 23(15): 7244-7251, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37348137

ABSTRACT

Strain engineering has quickly emerged as a viable option to modify the electronic, optical, and magnetic properties of 2D materials. However, it remains challenging to arbitrarily control the strain. Here we show that, by creating atomically flat surface nanostructures in hexagonal boron nitride, we achieve an arbitrary on-chip control of both the strain distribution and magnitude on high-quality molybdenum disulfide. The phonon and exciton emissions are shown to vary in accordance with our strain field designs, enabling us to write and draw any photoluminescence color image in a single chip. Moreover, our strain engineering offers a powerful means to significantly and controllably alter the strengths and energies of interlayer excitons at room temperature. This method can be easily extended to other material systems and offers promise for functional excitonic devices.

14.
J Biomed Opt ; 28(9): 094807, 2023 09.
Article in English | MEDLINE | ID: mdl-37234194

ABSTRACT

Significance: Optical imaging in the second near-infrared (NIR-II, 1000 to 1700 nm) region is capable of deep tumor vascular imaging due to low light scattering and low autofluorescence. Non-invasive real-time NIR-II fluorescence imaging is instrumental in monitoring tumor status. Aim: Our aim is to develop an NIR-II fluorescence rotational stereo imaging system for 360-deg three-dimensional (3D) imaging of whole-body blood vessels, tumor vessels, and 3D contour of mice. Approach: Our study combined an NIR-II camera with a 360-deg rotational stereovision technique for tumor vascular imaging and 3D surface contour for mice. Moreover, self-made NIR-II fluorescent polymer dots were applied in high-contrast NIR-II vascular imaging, along with a 3D blood vessel enhancement algorithm for acquiring high-resolution 3D blood vessel images. The system was validated with a custom-made 3D printing phantom and in vivo experiments of 4T1 tumor-bearing mice. Results: The results showed that the NIR-II 3D 360-deg tumor blood vessels and mice contour could be reconstructed with 0.15 mm spatial resolution, 0.3 mm depth resolution, and 5 mm imaging depth in an ex vivo experiment. Conclusions: The pioneering development of an NIR-II 3D 360-deg rotational stereo imaging system was first applied in small animal tumor blood vessel imaging and 3D surface contour imaging, demonstrating its capability of reconstructing tumor blood vessels and mice contour. Therefore, the 3D imaging system can be instrumental in monitoring tumor therapy effects.


Subject(s)
Neoplasms , Animals , Mice , Neoplasms/diagnostic imaging , Neoplasms/blood supply , Optical Imaging/methods , Coloring Agents , Imaging, Three-Dimensional/methods , Blood Vessels
15.
Sci Rep ; 13(1): 7774, 2023 May 13.
Article in English | MEDLINE | ID: mdl-37179398

ABSTRACT

Electrochromic (EC) materials for smart windows must exhibit a dark colour and block visible light (wavelength = 380-780 nm) to reduce environmental impact. In particular, black tones are also desired, and there are many reports of attempts to create these dark tones using organic materials such as polymers. However, their fabrication methods are complicated, expensive, and may even use hazardous substances; moreover, they are often not sufficiently durable, such as upon exposure to ultraviolet light. There are some reported cases of black materials using the CuO system as an inorganic material, but the synthesis method was complicated and the functionality was not stable. We have found a method to synthesize CuO nanoparticles by simply heating basic copper carbonate and adjusting the pH with citric acid to easily obtain a suspension. The formation and functionality of CuO thin films were also demonstrated using the developed suspension. This research will enable the creation of EC smart windows using existing inorganic materials and methods, such as printing technology, and is the first step towards developing environment-friendly, cost-effective, and functional dark inorganic materials.

16.
Biomater Sci ; 11(12): 4308-4326, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37066612

ABSTRACT

Creating infection resistant polymer brushes possessing antiadhesive, bactericidal and cell-compatible features can be regarded as a promising approach to prevent biomaterial-associated infections. In this work, polysulfobetaine type zwitterionic homo- and copolymer brushes with varying spacer lengths (charge separation distance between zwitterions, n = 3, 6 or 12) were allowed to grow onto a tartaric acid based aliphatic polyester substrate using surface initiated atom transfer radical polymerization. All of the brush modified surfaces were thoroughly characterized and assessed for their anti-infective performances in vitro. Strikingly, a suitable copolymer composition, i.e., polyZ6-co-Z12 (50/50 copolymer of polysulfobetaine methacrylates with 6 and 12 spacer lengths), was observed to inhibit bacterial growth completely and its activity was sustained for a long time (>3 months). Surprisingly, its antibacterial effect was found to be bactericidal, as is evident from live-dead staining of residual dead bacterial cells that can be easily released by exposing the surface to salt solution, thereby regenerating the surface. However, all of the other copolymer as well as homopolymer brushes exhibited bacteriostatic behavior. An attempt was made to understand the peculiar behavior of this particular brush composition. Nevertheless, the biocidal and also protein repellent brush did not display any cytotoxicity towards human cells, making it an ideal substrate to be used as an infection resistant biomedical implant. Animal studies further confirmed that this particular copolymeric brush modified scaffold can be a promising anti-infective wound dressing material with rapid wound healing effects as compared to the unmodified scaffold.


Subject(s)
Betaine , Methacrylates , Animals , Humans , Methacrylates/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Polymers/chemistry , Wound Healing , Surface Properties
17.
Nano Lett ; 23(9): 3971-3977, 2023 May 10.
Article in English | MEDLINE | ID: mdl-37071728

ABSTRACT

Exciton dynamics dictates the evolution of photoexcited carriers in photovoltaic and optoelectronic devices. However, interpreting their experimental signatures is a challenging theoretical problem due to the presence of both electron-phonon and many-electron interactions. We develop and apply here a first-principles approach to exciton dynamics resulting from exciton-phonon coupling in monolayer MoS2 and reveal the highly selective nature of exciton-phonon coupling due to the internal spin structure of excitons, which leads to a surprisingly long lifetime of the lowest-energy bright A exciton. Moreover, we show that optical absorption processes rigorously require a second-order perturbation theory approach, with photon and phonon treated on an equal footing, as proposed by Toyozawa and Hopfield. Such a treatment, thus far neglected in first-principles studies, gives rise to off-diagonal exciton-phonon self-energy, which is critical for the description of dephasing mechanisms and yields exciton line widths in excellent agreement with experiment.

18.
J Vasc Surg Cases Innov Tech ; 9(1): 101094, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36852316
19.
Nat Commun ; 14(1): 994, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36813811

ABSTRACT

Electrons and holes can spontaneously form excitons and condense in a semimetal or semiconductor, as predicted decades ago. This type of Bose condensation can happen at much higher temperatures in comparison with dilute atomic gases. Two-dimensional (2D) materials with reduced Coulomb screening around the Fermi level are promising for realizing such a system. Here we report a change in the band structure accompanied by a phase transition at about 180 K in single-layer ZrTe2 based on angle-resolved photoemission spectroscopy (ARPES) measurements. Below the transition temperature, gap opening and development of an ultra-flat band top around the zone center are observed. This gap and the phase transition are rapidly suppressed with extra carrier densities introduced by adding more layers or dopants on the surface. The results suggest the formation of an excitonic insulating ground state in single-layer ZrTe2, and the findings are rationalized by first-principles calculations and a self-consistent mean-field theory. Our study provides evidence for exciton condensation in a 2D semimetal and demonstrates strong dimensionality effects on the formation of intrinsic bound electron-hole pairs in solids.

20.
J Am Chem Soc ; 145(1): 516-526, 2023 01 11.
Article in English | MEDLINE | ID: mdl-36562565

ABSTRACT

Organic molecules having emission in the NIR(II) region are emergent and receiving enormous attention. Unfortunately, attaining accountable organic emission intensity around the NIR(II) region is hampered by the dominant internal conversion operated by the energy gap law, where the emission energy gap and the associated internal reorganization energy λint play key roles. Up to the current stage, the majority of the reported organic NIR(II) emitters belong to those polymethines terminated by two symmetric chromophores. Such a design has proved to have a small λint that greatly suppresses the internal conversion. However, the imposition of symmetric chromophores is stringent, limiting further development of organic NIR(II) dyes in diversity and versatility. Here, we propose a new concept where as far as the emissive state of the any asymmetric polymethines contains more or less equally transition density between two terminated chromophores, λint can be as small as that of the symmetric polymethines. To prove the concept, we synthesize a series of new polymethines terminated by xanthen-9-yl-benzoic acid and 2,4-diphenylthiopyrylium derivatives, yielding AJBF1112 and AEBF1119 that reveal emission peak wavelength at 1112 and 1119 nm, respectively. The quantum yield is higher than all synthesized symmetric polymethines of 2,4-diphenylthiopyrylium derivatives (SC1162, 1182, 1185, and 1230) in this study. λint were calculated to be as small as 6.2 and 7.3 kcal/mol for AJBF1112 and AEBF1119, respectively, proving the concept. AEBF1119 was further prepared as a polymer dot to demonstrate its in vitro specific cellular imaging and in vivo tumor/bone targeting in the NIR(II) region.


Subject(s)
Fluorescent Dyes , Indoles
SELECTION OF CITATIONS
SEARCH DETAIL
...