Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Immunopharmacol Immunotoxicol ; 46(1): 20-32, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37584252

ABSTRACT

OBJECTIVE: To study the reeducation effect of copper thiol complexes on macrophage morphology and cytokine expression. METHODS: The effect of copper thiol complexes was assessed on murine macrophages by the cell morphology observed through optical microscopy, while the expression of cytokines by protein abundance after stimulation. A viability experiment was performed on PMBC to confirm that copper complexes do not affect other cells. RESULTS: The M1 shape was reported after treatment with copper thiol complexes at 1-200 µM, while M2 behavior was documented between 50 and 800 µM. Surprisingly, a thin elongate morphology was observed between 400-800 µM like the M2 shape. The expression of M1 cytokines was noted ranging from 1 to 100 µM, with the highest yield at 1 µM (2243 pg/µL) for the copper-penicillamine complex. M2 production behavior was observed at 1-800 µM, with the highest abundance close to 1150 pg/µL (200-400 µM) was quantified from the copper-cysteine complex. Finally, LCCu complexes did not induce a cytotoxic response on PBMC while exhibiting a high IL-4 and IL-10 production, similar to their gold analogs. CONCLUSIONS: The capacity of copper thiol complexes to reeducate M1 to M2 morphoexpression can be promising for cell protection by using copper thiol penicillamine or immuno-regeneration of tissues when using copper thiol cysteine.


Subject(s)
Copper , Cytokines , Mice , Animals , Cytokines/metabolism , Copper/pharmacology , Copper/metabolism , Sulfhydryl Compounds/metabolism , Sulfhydryl Compounds/pharmacology , Cysteine/metabolism , Cysteine/pharmacology , Leukocytes, Mononuclear/metabolism , Macrophages/metabolism , Penicillamine/pharmacology , Penicillamine/metabolism
2.
Molecules ; 28(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36838969

ABSTRACT

Respiratory viruses represent a world public health problem, giving rise to annual seasonal epidemics and several pandemics caused by some of these viruses, including the COVID-19 pandemic caused by the novel SARS-CoV-2, which continues to date. Some antiviral drugs have been licensed for the treatment of influenza, but they cause side effects and lead to resistant viral strains. Likewise, aerosolized ribavirin is the only drug approved for the therapy of infections by the respiratory syncytial virus, but it possesses various limitations. On the other hand, no specific drugs are licensed to treat other viral respiratory diseases. In this sense, natural products and their derivatives have appeared as promising alternatives in searching for new compounds with antiviral activity. Besides their chemical properties, quinones have demonstrated interesting biological activities, including activity against respiratory viruses. This review summarizes the activity against respiratory viruses and their molecular targets by the different types of quinones (both natural and synthetic). Thus, the present work offers a general overview of the importance of quinones as an option for the future pharmacological treatment of viral respiratory infections, subject to additional studies that support their effectiveness and safety.


Subject(s)
COVID-19 , Respiratory Tract Infections , Virus Diseases , Humans , SARS-CoV-2 , Pandemics , Quinones/therapeutic use , Antiviral Agents/pharmacology , Virus Diseases/drug therapy , Respiratory Tract Infections/drug therapy
3.
Crit Rev Food Sci Nutr ; 62(10): 2673-2682, 2022.
Article in English | MEDLINE | ID: mdl-33297733

ABSTRACT

Proteins and peptides are fundamental components of the cereals, pseudocereals, and legumes, giving them numerous health-beneficial properties. Previous studies have demonstrated that these molecules exerted effects on current therapeutic targets related to type 2 diabetes mellitus, such as incretin hormones (responsible for appetite suppression), dipeptidyl peptidase IV (an enzyme involved in the inactivation and degradation of the incretin hormones), and glucose transporters (molecules that transport glucose in or out of cells). Therefore, this review presents the current biological activity of protein derivatives and peptides isolated from cereals, pseudocereals, and legumes on these therapeutic markers, highlighting their potential as a possible pharmacological treatment for type 2 diabetes mellitus.


Subject(s)
Diabetes Mellitus, Type 2 , Dipeptidyl-Peptidase IV Inhibitors , Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Incretins/metabolism , Peptides/pharmacology , Peptides/therapeutic use , Vegetables
4.
J Food Biochem ; 45(5): e13613, 2021 05.
Article in English | MEDLINE | ID: mdl-33768550

ABSTRACT

The immune system plays an important role in cancer development, but some tumor cells can evade or inhibit the processes of innate and adaptive immunity. This review made a description of honey and its proteins effect on diverse mediators from the immune system. Scientific evidence reported that many types of honey (jungle, manuka, pasture, and others) and some isolated proteins enhanced the release of reactive oxygen species (O2- and H2 O2 ) and cytokines (mostly IL-1ß, IL-6, and TNF-α) by innate immune system cells. Furthermore, honey elicited proliferation and functions of T lymphocytes, cells related to specific adaptive immune responses. These studies have established a precedent over the honey and its properties on the immune system, demonstrating that it can promote the innate and adaptive immunity. PRACTICAL APPLICATIONS: Cancer is a genetic illness that represents a world health problem. Recognizing the potential of diet therapy in the prevention and treatment of chronic diseases, the present work summarizes the effects of honey on the immune system and mediators involved in cancer elimination processes, establishing the importance of this natural product as a future anticancer agent.


Subject(s)
Honey , Neoplasms , Cytokines , Humans , Reactive Oxygen Species , Tumor Necrosis Factor-alpha
5.
J Food Biochem ; 43(5): e12834, 2019 05.
Article in English | MEDLINE | ID: mdl-31353524

ABSTRACT

Type 1 diabetes is an autoimmune disease induced by abnormal insulin secretions from ß-cells in pancreas. The present study aimed to investigate the immunosuppressive effects from protein derivatives of Mucuna pruriens on a murine model of Type 1 diabetes. Hydrolyzate and five peptide fractions with different molecular weight were administered orally by 14 days, followed T1D murine model was built by intraperitoneal injection of streptozotocin over 5 days. The mice weight, blood glucose levels, anti-insulin, and anti-pancreatic islet ß-cells antibodies, pro-inflammatory cytokines as tumor necrosis factor alpha and interleukin-6 were determined in four times (0, 15, 30, and 45 day). Mice were sacrificed and pancreatic tissues samples were obtained and staining with hematoxylin and eosin to determine the degree of damage. The study demonstrated immunosuppressive activity in four of the six treatment groups: (a) T1D PPH, (b) T1D F 5-10 kDa, (c) T1D F 3-5 kDa, and (d) T1D F 1-3 kDa. PRACTICAL APPLICATIONS: Due to the high content of native protein in seeds of Mucuna pruriens, studies have reported potential in the elaboration of hydrolysates and peptides with biological activity. These protein derivatives could help in the treatment of immunological disorders that are observed in several chronic non-communicable disease and inflammatory diseases, such as T1D. Activated macrophages and lymphoplasmacytic infiltrate plays a crucial role in the initiation and maintenance of T1D; therefore, several studies has focused to reduce the effector functions of this cells for diminishing the clinical manifestations in inmmunocompromised patients. Thus, this study indicates the potential application of hydrolyzate and peptide fractions of M. pruriens in functional foods and dietary supplements could be developed for the treatment of inflammatory and chronic non-communicable diseases.


Subject(s)
Diabetes Mellitus, Type 1/drug therapy , Immunosuppressive Agents/pharmacology , Mucuna/chemistry , Peptides/pharmacology , Protein Hydrolysates/pharmacology , Animals , Diabetes Mellitus, Type 1/chemically induced , Dietary Supplements/analysis , Disease Models, Animal , Female , Functional Food/analysis , Immunosuppressive Agents/isolation & purification , Islets of Langerhans/drug effects , Male , Mice , Mice, Inbred BALB C , Peptides/isolation & purification , Plant Proteins/metabolism , Protein Hydrolysates/isolation & purification , Seeds/chemistry , Streptozocin/adverse effects
6.
Drug Dev Res ; 80(6): 800-806, 2019 09.
Article in English | MEDLINE | ID: mdl-31243798

ABSTRACT

Gymnosperma glutinosum (Spreng) Less (Asteraceae) is a shrub used in traditional medicine for the treatment of inflammatory and renal diseases. The ent-dihydrotucumanoic acid (DTA) is a diterpene obtained from G. glutinosum. This study evaluated the antioxidant, genotoxic, and diuretic properties of DTA, as well as its in vitro and in vivo anti-inflammatory actions. The antioxidant actions of DTA were assessed with the 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing antioxidant power (FRAP), and 2,2'-diphenyl-1-picrylhydrazyl (DPPH) assays, the genotoxic action was assessed with the comet assay, and the diuretic effects of DTA were assessed using metabolic cages. The anti-inflammatory actions were evaluated using primary murine peritoneal macrophages stimulated with LPS and the λ-carrageenan-induced hind paw edema test. DTA lacked antioxidant (IC50 > 25,000 µg/mL) activity in the ABTS, FRAP, and DPPH assays. DTA at 500-1,000 µg/mL showed moderate genotoxicity. In LPS-stimulated macrophages, DTA showed IC50 values of 74.85 µg/mL (TNF-α) and 58.12 µg/mL (NO), whereas the maximum inhibition of IL-6 (24%) and IL-1ß (36%) was recorded at 200 µg/mL. DTA induced in vivo anti-inflammatory effects with ED50 = 124.3 mg/kg. The in vitro anti-inflammatory activity of DTA seems to be associated with the decrease in the release of TNF-α and NO. DTA promoted the excretion of urine (ED50 = 86.9 mg/kg), Na+ (ED50 = 66.7 mg/kg), and K+ (ED50 = 8.6 mg/kg). The coadministration of DTA with L-NAME decreased the urinary excretion shown by DTA alone. Therefore, the diuretic activity is probably associated with the participation of nitric oxide synthase. In conclusion, DTA exerted anti-inflammatory and diuretic effects, but lacked antioxidant effects.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Diterpenes/pharmacology , Diuretics/pharmacology , Animals , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents/toxicity , Antioxidants/chemistry , Antioxidants/therapeutic use , Antioxidants/toxicity , Asteraceae , Benzothiazoles/chemistry , Biphenyl Compounds/chemistry , Carrageenan , Comet Assay , Cytokines/metabolism , Diterpenes/chemistry , Diterpenes/therapeutic use , Diterpenes/toxicity , Diuretics/chemistry , Diuretics/therapeutic use , Diuretics/toxicity , Edema/chemically induced , Edema/drug therapy , Humans , Leukocytes, Mononuclear/drug effects , Lipopolysaccharides , Macrophages/drug effects , Macrophages/metabolism , Male , Mice, Inbred BALB C , Nitric Oxide/metabolism , Picrates/chemistry , Sulfonic Acids/chemistry
7.
Afr J Tradit Complement Altern Med ; 14(1): 179-186, 2017.
Article in English | MEDLINE | ID: mdl-28480396

ABSTRACT

BACKGROUND: The aim of this work was to evaluate the immunomodulatory effect of the methanol extract (MeOH) from Chrysophyllum cainito leaves on the MΦs functions. MATERIAL AND METHODS: Peritoneal murine MΦs isolated from Balb/c mice were treated with the MeOH extract and stimulated with LPS. The effect on the phagocytosis was evaluated by flow cytometry assay. The nitric oxide (NO) and hydrogen peroxide (H2O2) production was measured by the Griess reagent and phenol red reaction, respectively. Levels of IL-6 and TNF-α was measured using an ELISA kit. Viability of MΦs and Vero cells was determined by the MTT method. RESULTS: The MeOH extract of C. cainito leaves inhibited significantly the phagocytosis, and decreased IL-6 and TNF-α production as well as NO and H2O2 released by the MΦs, in a concentration-dependent manner. In addition, MeOH extract of C. cainito showed low cytotoxicity effect against the cells. CONCLUSION: These results suggest that MeOH extract of C. cainito leaves has an immunosuppressive effect on murine MΦs, without effects on cell viability. GC-MS chromatogram analysis of MeOH extract showed that lupeol acetate and alpha-amyrin acetate are the principal compounds.


Subject(s)
Immunosuppressive Agents/pharmacology , Macrophages, Peritoneal/drug effects , Macrophages, Peritoneal/immunology , Plant Extracts/pharmacology , Sapotaceae/chemistry , Animals , Cells, Cultured , Interleukin-6/immunology , Mice , Plant Leaves/chemistry , Tumor Necrosis Factor-alpha/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...