Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Sens ; 9(1): 206-216, 2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38114442

ABSTRACT

Though considerable progress has been achieved on gas molecule recognition by electronic nose (e-nose) comprised of nonselective (metal oxide) semiconductor chemiresistors, extracting adequate molecular features within short time (<1 s) remains a big obstacle, which hinders the emerging e-nose applications in lethal or explosive gas warning. Herein, by virtue of the ultrafast (∼20 µs) thermal relaxation time of self-heated WO3-based chemiresistors fabricated via oblique angle deposition, instead of external heating, self-heating temperature modulation has been proposed to generate sufficient electrical response features. Accurate discrimination of 12 gases (including 3 xylene isomers with the same function group and molecular weight) has been readily achieved within 0.5-1 s, which is one order faster than the state-of-the-art e-noses. A smart wireless e-nose, capable of instantaneously discriminating target gas in ambient air background, has been developed, paving the way for the practical applications of e-nose in the area of homeland security and public health.


Subject(s)
Gases , Heating , Temperature , Electronics , Oxides
3.
Sci Rep ; 13(1): 10799, 2023 Jul 04.
Article in English | MEDLINE | ID: mdl-37402874

ABSTRACT

This paper experimentally demonstrates a crossed reaction of pure and hybrid graphene oxide (GO)/tantalum dioxide (TaO2) as a volatile organic compound (VOC) absorber in a guided mode resonance (GMR) sensing platform. The proposed GMR platform has a porous TaO2 film as the main guiding layer, allowing for more molecular adsorption and enhanced sensitivity. GO is applied on top as an additional VOC absorber to increase the selectivity. The hybrid sensing mechanism is introduced by varying the concentration of the GO aqueous solution. The experimental results show that the pure TaO2-GMR has a high tendency to adsorb most of the tested VOC molecules, with the resonance wavelength shifting accordingly to the physical properties of the VOCs (molecular weight, vapor pressure, etc). The largest signal appears in the large molecule such as toluene, and its sensitivity is gradually reduced in the hybrid sensors. At the optimum GO concentration of 3 mg/mL, the hybrid GO/TaO2 -GMR is more sensitive to methanol, while the pure GO sensor coated with GO at 5 mg/mL is highly selective to ammonia. The sensing mechanisms are verified using the distribution function theory (DFT) to simulate the molecular absorption, along with the measured functional groups measured on the sensor surface by the Fourier transform infrared spectroscopy (FTIR). The crossed reaction of these sensors is further analyzed by means of machine learning, specifically the principal component analysis (PCA) method and decision tree algorithm. The results show that this sensor is a promising candidate for quantitative and qualitative VOCs detection in sensor array platform.

4.
Nanomaterials (Basel) ; 13(11)2023 Jun 04.
Article in English | MEDLINE | ID: mdl-37299702

ABSTRACT

This study systematically investigates the influence of antimony (Sb) species on the electrical properties of Sb-doped zinc oxide (SZO) thin films prepared by pulsed laser deposition in an oxygen-rich environment. The Sb species-related defects were controlled through a qualitative change in energy per atom by increasing the Sb content in the Sb2O3:ZnO-ablating target. By increasing the content of Sb2O3 (wt.%) in the target, Sb3+ became the dominant Sb ablation species in the plasma plume. Consequently, n-type conductivity was converted to p-type conductivity in the SZO thin films prepared using the ablating target containing 2 wt.% Sb2O3. The substituted Sb species in the Zn site (SbZn3+ and SbZn+) were responsible for forming n-type conductivity at low-level Sb doping. On the other hand, the Sb-Zn complex defects (SbZn-2VZn) contributed to the formation of p-type conductivity at high-level doping. The increase in Sb2O3 content in the ablating target, leading to a qualitative change in energy per Sb ion, offers a new pathway to achieve high-performing optoelectronics using ZnO-based p-n junctions.

5.
Spectrochim Acta A Mol Biomol Spectrosc ; 281: 121598, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35816867

ABSTRACT

Many countries have legalized cannabis and its derived products for multiple purposes. Consequently, it has become necessary to develop a rapid, effective, and reliable tool for detecting delta-9-tetrahydrocannabinol (THC) and cannabinol (CBN), which are important biologically active compounds in cannabis. Herein, we have fabricated SERS chips by using glancing angle deposition and tuned dimensions of silver nanorods (AgNRs) for detecting THC and CBN at low concentrations. Experimental and computational results showed that the AgNR substrate with film thickness (or nanorod length) of 150 nm, corresponding to nanorod diameter of 79 nm and gap between nanorods of 23 nm, can effectively sense trace THC and CBN with good reproducibility and sensitivity. Due to limited spectral studies of the cannabinoids in previous reports, this work also explored towards identifying characteristic Raman lines of THC and CBN. This information is critical to further reliable data analysis and interpretation. Moreover, multianalyte detection of THC and CBN in a mixture was successfully demonstrated by applying an open-source independent component analysis (ICA) model. The overall method is fast, sensitive, and reliable for sensing trace THC and CBN. The SERS chip-based method and spectral results here are useful for a variety of cannabis testing applications, such as product screening and forensic investigation.


Subject(s)
Cannabinoids , Cannabis , Cannabinoids/analysis , Cannabinol/analysis , Cannabis/chemistry , Dronabinol/analysis , Reproducibility of Results
6.
J Nanosci Nanotechnol ; 20(8): 5006-5013, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32126691

ABSTRACT

In the present study, indium tin oxide (ITO) nanorod films were produced by usage of ion-assisted electron-beam evaporation with a glancing angle deposition technique. The as-produced ITO nanorod films were annealed in the temperature range of 100-500 °C for two hours in a vacuum atmosphere. The as-produced ITO nanorod films exhibited (222) and (611) preferred orientations from the X-ray diffraction pattern. After vacuum annealing at 500 °C, the ITO nanorod films demonstrated many preferred orientations and the improvement of film crystallinity. The sheet resistance of the as-produced ITO nanorod films was 11.92 Ω/ and was found to be 13.63 Ω/ by annealing at 500 °C. The as-produced and annealed ITO nanorod films had a rod diameter of around 80 nm and transmittance in a visible zone of around 90%. The root mean square roughness of the as-produced ITO nanorod film's surface was 5.49 nm, which increased to 13.77 nm at an annealing temperature of 500 °C. The contact angle of the as-produced ITO nanorod films was 110.9° and increased to 116.5° after annealing at 500 °C.

7.
J Nanosci Nanotechnol ; 19(3): 1432-1438, 2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30469201

ABSTRACT

Indium tin oxide (ITO) nanorod films were deposited onto glass slides and Si wafers using ionassisted electron beam evaporation with a glancing angle deposition technique. The annealing influence on the basic properties of the as-deposited ITO nanorod films was studied in the range of 100-500 °C for two hours in air. The crystallinity of the ITO nanorod films was enhanced with the increasing annealing temperature, and the average transmission of the as-deposited ITO nanorod films in the visible range was 90%. This value did not change significantly after the annealing process. The optical bandgap of the as-deposited ITO nanorod films was 3.94 eV and increased slightly after annealing. The sheet resistance of the as-deposited ITO nanorod films was 12.9 Ω/ and increased to 57.8 Ω/ at an annealing temperature of 500 °C. The as-deposited ITO nanorod films showed nanorod structures with average diameters of 79 nm, which changed slightly with the annealing temperature. The root mean square roughness of the as-deposited ITO nanorod films was 7.9 nm and changed slightly with annealing. The as-deposited ITO nanorod films had an average contact angle of 110.9°, which decreased to 64.2° at an annealing temperature of 500 °C. The experimental results showed that varying the annealing temperature influenced the structural, electrical and wettability properties of the ITO nanorod films while the optical properties and surface morphology were almost unaffected.

8.
Tuberculosis (Edinb) ; 108: 195-200, 2018 01.
Article in English | MEDLINE | ID: mdl-29523323

ABSTRACT

Nanostructures have been multiplying the advantages of Raman spectroscopy and further amplify the advantages of Raman spectroscopy is a continuous effort focused on the appropriate design of nanostructures. Herein, we designed different shapes of plasmonic nanostructures such as Vertical, Zig Zag, Slant nanorods and Spherical nanoparticles employing the DC magnetron sputtering system as SERS-active substrates for ultrasensitive detection of target molecules. The fabricated plasmonic nanostructures sensitivity and uniformity were exploited by reference dye analyte. These nanostructures were utilized in the label free detection of infectious disease, Tuberculosis (TB). For the first time, TB detection from serum samples using SERS has been demonstrated. Various multivariate statistical methods such as principal component analysis, support vector machine, decision tree and random forest were developed and tested their ability to discriminate the healthy and active TB samples. The results demonstrate the performance of the SERS spectra, chemometric methods and potential of the method in clinical diagnosis.


Subject(s)
Antigens, Bacterial/blood , Bacterial Proteins/blood , Metal Nanoparticles/chemistry , Mycobacterium tuberculosis/metabolism , Nanomedicine/methods , Spectrum Analysis, Raman/methods , Tuberculosis/blood , Tuberculosis/diagnosis , Adsorption , Antigens, Bacterial/immunology , Bacterial Proteins/immunology , Biomarkers/blood , Case-Control Studies , Decision Trees , Humans , Multivariate Analysis , Mycobacterium tuberculosis/immunology , Predictive Value of Tests , Principal Component Analysis , Reproducibility of Results , Support Vector Machine , Surface Properties , Tuberculosis/immunology , Tuberculosis/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...