Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev E ; 107(3-1): 034132, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37073036

ABSTRACT

The emergence of a power-law distribution for the energy released during an earthquake is investigated in several models. Generic features are identified which are based on the self-affine behavior of the stress field prior to an event. This field behaves at large scale as a random trajectory in one dimension of space and a random surface in two dimensions. Using concepts of statistical mechanics and results on the properties of these random objects, several predictions are obtained and verified, in particular the value of the power-law exponent of the earthquake energy distribution (the Gutenberg-Richter law) as well as a mechanism for the existence of aftershocks after a large earthquake (the Omori law).

3.
Nat Commun ; 8(1): 2143, 2017 12 15.
Article in English | MEDLINE | ID: mdl-29247158

ABSTRACT

The degree to which short-term non-tectonic processes, either natural and anthropogenic, influence the occurrence of earthquakes in active tectonic settings or 'stable' plate interiors, remains a subject of debate. Recent work in plate-boundary regions demonstrates the capacity for long-wavelength changes in continental water storage to produce observable surface deformation, induce crustal stresses and modulate seismicity rates. Here we show that a significant variation in the rate of microearthquakes in the intraplate New Madrid Seismic Zone at annual and multi-annual timescales coincides with hydrological loading in the upper Mississippi embayment. We demonstrate that this loading, which results in geodetically observed surface deformation, induces stresses within the lithosphere that, although of small amplitude, modulate the ongoing seismicity of the New Madrid region. Correspondence between surface deformation, hydrological loading and seismicity rates at both annual and multi-annual timescales indicates that seismicity variations are the direct result of elastic stresses induced by the water load.

SELECTION OF CITATIONS
SEARCH DETAIL
...