Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Appl Genet ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733523

ABSTRACT

Sweet corn has emerged as a favorite food item worldwide owing to its kernel sweetness. However, traditional sweet corn cultivars are poor in provitamin-A (proA) and essential amino acids, viz., lysine and tryptophan. So far, no sweet corn hybrid with high nutritional qualities has been commercialized elsewhere. Here, we analyzed accumulation of provitamin-A (proA), lysine, and tryptophan in a set of mutant versions of (i) crtRB1-, (ii) o2-, and (iii) crtRB1 + o2-based sweet corn inbreds and hybrids with (iv) traditional sweet corn (wild-type: O2 + CrtRB1). The crtRB1- and crtRB1 + o2-based genotypes possessed significantly higher proA (17.31 ppm) over traditional sweet corn (2.83 ppm), while o2- and crtRB1 + o2-based genotypes possessed significantly higher lysine (0.345%) and tryptophan (0.080%) over traditional sweet corn (lysine 0.169%, tryptophan 0.036%). Late sowing favored high kernel lysine, proA, and green cob yield among hybrids. Sweetness (17.87%) among the improved inbreds and hybrids was comparable to the original sweetcorn genotypes (17.84%). Among the four genotypic classes, crtRB1 + o2-based improved genotypes showed stronger association among traits over genotypes with o2 and crtRB1 genes alone. Significant association was observed among (i) proA and BC (r = 0.99), (ii) proA and BCX (r = 0.93), (iii) lysine and tryptophan (r = 0.99), and (iv) green cob yield with fodder yield (r = 0.73) in sweet corn hybrids. The study demonstrated that combining crtRB1 and o2 genes did not pose any negative impact on nutritional, yield, and agronomic performance. Sweet corn with crtRB1 + o2 assumes significance for alleviating malnutrition through sustainable and cost-effective approach.

2.
Amino Acids ; 56(1): 20, 2024 Mar 09.
Article in English | MEDLINE | ID: mdl-38460024

ABSTRACT

The mutant matrilineal (mtl) gene encoding patatin-like phospholipase activity is involved in in-vivo maternal haploid induction in maize. Doubling of chromosomes in haploids by colchicine treatment leads to complete fixation of inbreds in just one generation compared to 6-7 generations of selfing. Thus, knowledge of patatin-like proteins in other crops assumes great significance for in-vivo haploid induction. So far, no online tool is available that can classify unknown proteins into patatin-like proteins. Here, we aimed to optimize a machine learning-based algorithm to predict the patatin-like phospholipase activity of unknown proteins. Four different kernels [radial basis function (RBF), sigmoid, polynomial, and linear] were used for building support vector machine (SVM) classifiers using six different sequence-based compositional features (AAC, DPC, GDPC, CTDC, CTDT, and GAAC). A total of 1170 protein sequences including both patatin-like (585 sequences) from various monocots, dicots, and microbes; and non-patatin-like proteins (585 sequences) from different subspecies of Zea mays were analyzed. RBF and polynomial kernels were quite promising in the prediction of patatin-like proteins. Among six sequence-based compositional features, di-peptide composition attained > 90% prediction accuracies using RBF and polynomial kernels. Using mutual information, most explaining dipeptides that contributed the highest to the prediction process were identified. The knowledge generated in this study can be utilized in other crops prior to the initiation of any experiment. The developed SVM model opened a new paradigm for scientists working in in-vivo haploid induction in commercial crops. This is the first report of machine learning of the identification of proteins with patatin-like activity.


Subject(s)
Support Vector Machine , Zea mays , Zea mays/genetics , Haploidy , Peptides/genetics , Phospholipases/genetics
3.
J Appl Genet ; 64(3): 431-443, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37450243

ABSTRACT

Traditional maize is poor in vitamin-E [α-tocopherol (α-T): 6-8 ppm], vitamin-A [provitamin-A (proA): 1-2ppm], lysine (0.150-0.2-50%), and tryptophan (0.030-0.040%). Here, we combined favourable alleles of vte4, crtRB1, and opaque2 (o2) genes in the parents of maize hybrids, viz., APQH-10 (PMI-PV-9 × PMI-PV-14) and APQH-11 (PMI-PV-9 × PMI-PV-15) using molecular breeding. Gene-specific markers were successfully used to select vte4, crtRB1, and o2 in BC1F1, BC2F1, and BC2F2 generations. Simple sequence repeats (104-109) were used for background selection, leading to an average recovery of 94% recurrent parent genome. The introgressed inbreds possessed significantly higher α-T: 18.38 ppm, α-/γ-tocopherol (α-/γ-T: 52%), and α-/total tocopherol (α-/TT: 32%) compared to original inbreds (α-T: 8.17 ppm, α-/γ-T: 25%, α-/TT: 18%). These newly derived inbreds also possessed higher ß-carotene (BC: 8.91 ppm), ß-cryptoxanthin (BCX: 1.27 ppm), proA (9.54 ppm), lysine (0.348%), and tryptophan (0.082%) compared to traditional maize inbreds. The reconstituted hybrids recorded higher α-T (2.1-fold), α-/γ-T (1.9-fold), and α-/TT (1.6-fold) over the original hybrids. These reconstituted hybrids were also rich in BC (5.7-fold), BCX (3.3-fold), proA (5.3-fold), lysine (1.9-fold), and tryptophan (2.0-fold) over the traditional hybrids. The reconstituted hybrids had similar grain yield and phenotypic characteristics to original versions. These multinutrient-rich maize hybrids hold great potential to alleviate malnutrition in sustainable and cost-effective manner.


Subject(s)
Lysine , Zea mays , Zea mays/genetics , Lysine/genetics , Tryptophan/genetics , Plant Breeding , Genetic Markers , Nutritive Value , Vitamins
4.
Plant Physiol Biochem ; 197: 107668, 2023 Apr.
Article in English | MEDLINE | ID: mdl-37003215

ABSTRACT

Embryo is a key determinant of kernel-oil in maize. Higher calorific value of maize kernel is attributed to increment in kernel-oil and it stores in specialised structure called embryo. Understanding the genetic behaviour of embryo size and weight related-traits is inevitable task for genetic improvement of kernel-oil. Here, the six-basic generations (P1, P2, F1, F2, BC1P1 and BC1P2) of three crosses (CRPBIO-962 × EC932601, CRPBIO-973 × CRPBIO-966 and CRPBIO-966 × CRPBIO-979) between contrasting embryo-sized maize inbreds were field evaluated at three locations to decipher the genetics of twenty embryo, kernel and embryo-to-kernel related-traits through generation-mean-analysis (GMA). Combined ANOVA revealed the significance of all the traits among generations; however, location and generation × location were found to be non-significant (P > 0.05) for most of the traits. Significance (P < 0.05) of scaling and joint-scaling tests revealed the presence of non-allelic interactions. Elucidation of six-parameters disclosed the predominance of dominance main-effect (h) and dominance × dominance interaction-effect (l) for most of traits. The signs of (h) and (l) indicated the prevalence of duplicate-epistasis type across crosses and locations. Thus, the population improvement approaches along with heterosis breeding method could be effective for improvement of these traits. Quantitative inheritance pattern was observed for all the traits with high broad-sense heritability and better-stability across locations. The study also predicted one to three major-gene blocks/QTLs for embryo-traits and up to 11 major-gene blocks/QTLs for embryo-to-kernel traits. These findings could provide deep insights to strategize extensive breeding methods to improve embryo traits for enhancing kernel-oil in sustainable manner.


Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Crosses, Genetic , Quantitative Trait Loci , Phenotype
5.
Mol Biol Rep ; 50(6): 4965-4974, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37083988

ABSTRACT

BACKGROUND: Malnutrition affects large section of population worldwide. Vitamin A and protein deficiencies have emerged as the major global health-issue. Traditional shrunken2 (sh2)-based sweet corn is deficient in provitamin A (proA), lysine and tryptophan. Natural variant of ß-carotene hydroxylase1 (crtRB1) and opaque2 (o2) enhances proA, lysine and tryptophan in maize. So far, no sweet corn hybrid rich in these nutrients has been released elsewhere. Development of biofortified sweet corn hybrids would help in providing the balanced nutrition. METHODS AND RESULTS: We targeted three sh2-based sweet corn inbreds (SWT-19, SWT-20 and SWT-21) for introgression of mutant crtRB1 and o2 genes using molecular breeding. The gene-based 3'TE-InDel and simple sequence repeat (SSR) (umc1066) markers specific to crtRB1 and o2, respectively were utilized in foreground selection in BC1F1, BC2F1 and BC2F2. Segregation distortion was observed for crtRB1 and o2 genes in majority of populations. Background selection using 91-100 SSRs revealed recovery of recurrent parent genome (RPG) up to 96%. The introgressed progenies possessed significantly higher proA (13.56 µg/g) as compared to the original versions (proA: 2.70 µg/g). Further, the introgressed progenies had accumulated moderately higher level of lysine (0.336%) and tryptophan (0.082%) over original versions (lysine: 0.154% and tryptophan: 0.038%). Kernel sweetness among introgressed progenies (17.3%) was comparable to original sweet corn (17.4%). The introgressed inbreds exhibited higher resemblance with their recurrent parents for yield and morphological characters. CONCLUSION: These newly developed biofortified sweet corn genotypes hold immense promise to alleviate malnutrition.


Subject(s)
Lysine , Provitamins , Provitamins/metabolism , Lysine/metabolism , Zea mays/genetics , Zea mays/metabolism , Tryptophan/metabolism , Plant Breeding , Genotype , Genomics
6.
Mol Biol Rep ; 50(3): 2221-2229, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36564657

ABSTRACT

BACKGROUND: In-vivo maternal haploids serve as the basis of doubled haploid (DH) breeding in maize. R1-navajo (R1-nj) gene governing anthocyanin colouration in the endosperm and embryo is widely used to identify haploid seeds. However, the expression of R1-nj depends on genetic-background of source-germplasm used for deriving DH-lines. Further, presence of C1-Inhibitor (C1-I) gene suppresses the expression of R1-nj, thus makes the selection of haploids difficult. METHODS: In the present study, 178 subtropically-adapted maize inbreds were crossed with two R1-nj donors 'that do not have haploid induction genes'. Of these, 76.4% inbreds developed purple colour in endosperm, while 23.6% did not show any colouration. In case of scutellum, 62.9% inbreds possessed colour and 37.1% were colourless. The anthocyanin intensity varied greatly, with 19.66% and 42.98% inbreds displayed the least intensity, while 16.85% and 0.84% inbreds showed the highest intensity in endosperm and scutellum, respectively. Two C1-I specific breeder-friendly markers (MGU-CI-InDel8 and MGU-C1-SNP1) covering (i) 8 bp InDel and (ii) A to G SNP, respectively, were developed. MGU-CI-InDel8 and MGU-C1-SNP1 markers predicted presence of C1-I allele with 92.9% and 84.7% effectiveness, respectively. However, when both markers were considered together, they provided 100% effectiveness. CONCLUSIONS: These markers of C1-I gene would help in saving valuable resources and time during haploid induction in maize. The information generated here assume great significance in DH breeding of maize.


Subject(s)
Anthocyanins , Zea mays , Haploidy , Zea mays/genetics , Anthocyanins/genetics , Plant Breeding , Pigmentation/genetics
8.
Physiol Mol Biol Plants ; 28(9): 1753-1764, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36387980

ABSTRACT

Waxy maize is popular for food-, feed- and industrial usage. It possesses a recessive waxy1 (wx1) gene that enhances amylopectin to ~ 95-100%, compared to ~ 70-75% in traditional maize. Marker-assisted selection (MAS) is a preferred approach to converting normal maize into a waxy version. However, it requires specialized expertise, a well-equipped laboratory, and high cost. Here, pollen staining was used as an alternative approach to MAS. BC1F1, BC1F2 and BC2F2 populations in seven genetic backgrounds segregating for the wx1 gene were used. Pollens treated with iodine-potassium iodide showed that wild types (Wx1Wx1) were dark purple, while waxy pollens (wx1wx1) exhibited red colour. Heterozygotes (Wx1wx1) showed a mix of both dark purple and red colour. Staining of endosperm flour also confirmed the same findings. Wx1-based genotyping using phi022 and wx2507F/RG confirmed the same genotypic status. The average amylopectin among genotypes having red coloured pollens was 97.6%, while it was 72.5% among dark purple. Heterozygotes with both dark purple and red pollens had 85.2% amylopectin. Pollen staining showed complete agreement with the genotyping as well as amylopectin contents. Pollen staining saved 81% cost, and 54% time compared to MAS. This is the first report on the utilization of pollen staining for selecting the wx1 allele in segregating populations used for the development of waxy maize hybrids. Supplementary Information: The online version contains supplementary material available at 10.1007/s12298-022-01240-1.

9.
Sci Rep ; 12(1): 706, 2022 01 13.
Article in English | MEDLINE | ID: mdl-35027624

ABSTRACT

Waxy maize rich in amylopectin has emerged as a preferred food. However, waxy maize is poor in lysine and tryptophan, deficiency of which cause severe health problems. So far, no waxy hybrid with high lysine and tryptophan has been developed and commercialized. Here, we combined recessive waxy1 (wx1) and opaque2 (o2) genes in the parental lines of four popular hybrids (HQPM1, HQPM4, HQPM5, and HQPM7) using genomics-assisted breeding. The gene-based markers, wx-2507F/RG and phi057 specific for wx1 and o2, respectively were successfully used to genotype BC1F1, BC2F1 and BC2F2 populations. Background selection with > 100 SSRs resulted in recovering > 94% of the recurrent parent genome. The reconstituted hybrids showed 1.4-fold increase in amylopectin (mean: 98.84%) compared to the original hybrids (mean: 72.45%). The reconstituted hybrids also showed 14.3% and 14.6% increase in lysine (mean: 0.384%) and tryptophan (mean: 0.102%), respectively over the original hybrids (lysine: 0.336%, tryptophan: 0.089%). Reconstituted hybrids also possessed similar grain yield (mean: 6248 kg/ha) with their original versions (mean: 6111 kg/ha). The waxy hybrids with high lysine and tryptophan assume great significance in alleviating malnutrition through sustainable and cost-effective means. This is the first report of development of lysine and tryptophan rich waxy hybrids using genomics-assisted selection.


Subject(s)
Amylopectin/metabolism , Chimera/genetics , Chimera/metabolism , Genes, Plant/genetics , Genes, Recessive/genetics , Genomics/methods , Lysine/metabolism , Plant Breeding/methods , Tryptophan/metabolism , Zea mays/genetics , Zea mays/metabolism , Genotype , Selection, Genetic
10.
Front Plant Sci ; 12: 659381, 2021.
Article in English | MEDLINE | ID: mdl-34367197

ABSTRACT

Malnutrition is a widespread problem that affects human health, society, and the economy. Traditional maize that serves as an important source of human nutrition is deficient in vitamin-E, vitamin-A, lysine, and tryptophan. Here, favorable alleles of vte4 (α-tocopherol methyl transferase), crtRB1 (ß-carotene hydroxylase), lcyE (lycopene ε-cyclase), and o2 (opaque2) genes were combined in parental lines of four popular hybrids using marker-assisted selection (MAS). BC1F1, BC2F1, and BC2F2 populations were genotyped using gene-based markers of vte4, crtRB1, lcyE, and o2. Background selection using 81-103 simple sequence repeats (SSRs) markers led to the recovery of recurrent parent genome (RPG) up to 95.45%. Alpha (α)-tocopherol was significantly enhanced among introgressed progenies (16.13 µg/g) as compared to original inbreds (7.90 µg/g). Provitamin-A (proA) (10.42 µg/g), lysine (0.352%), and tryptophan (0.086%) were also high in the introgressed progenies. The reconstituted hybrids showed a 2-fold enhancement in α-tocopherol (16.83 µg/g) over original hybrids (8.06 µg/g). Improved hybrids also possessed high proA (11.48 µg/g), lysine (0.367%), and tryptophan (0.084%) when compared with traditional hybrids. The reconstituted hybrids recorded the mean grain yield of 8,066 kg/ha, which was at par with original hybrids (mean: 7,846 kg/ha). The MAS-derived genotypes resembled their corresponding original hybrids for the majority of agronomic and yield-related traits, besides characteristics related to distinctness, uniformity, and stability (DUS). This is the first report for the development of maize with enhanced vitamin-E, vitamin-A, lysine, and tryptophan.

11.
PLoS One ; 16(2): e0245497, 2021.
Article in English | MEDLINE | ID: mdl-33539427

ABSTRACT

Malnutrition has emerged as one of the major health problems worldwide. Traditional yellow maize has low provitamin-A (proA) content and its genetic base in proA biofortification breeding program of subtropics is extremely narrow. To diversify the proA rich germplasm, 10 elite low proA inbreds were crossed with a proA rich donor (HP702-22) having mutant crtRB1 gene. The F2 populations derived from these crosses were genotyped using InDel marker specific to crtRB1. Severe marker segregation distortion was observed. Seventeen crtRB1 inbreds developed through marker-assisted pedigree breeding and seven inbreds generated using marker-assisted backcross breeding were characterized using 77 SSRs. Wide variation in gene diversity (0.08 to 0.79) and dissimilarity coefficient (0.28 to 0.84) was observed. The inbreds were grouped into three major clusters depicting the existing genetic diversity. The crtRB1-based inbreds possessed high ß-carotene (BC: 8.72µg/g), ß-cryptoxanthin (BCX: 4.58µg/g) and proA (11.01µg/g), while it was 2.35µg/g, 1.24µg/g and 2.97µg/g in checks, respectively. Based on their genetic relationships, 15 newly developed crtRB1-based inbreds were crossed with five testers (having crtRB1 gene) using line × tester mating design. 75 experimental hybrids with crtRB1 gene were evaluated over three locations. These experimental hybrids possessed higher BC (8.02µg/g), BCX (4.69µg/g), proA (10.37µg/g) compared to traditional hybrids used as check (BC: 2.36 µg/g, BCX: 1.53µg/g, proA: 3.13µg/g). Environment and genotypes × environment interaction had minor effects on proA content. Both additive and dominance gene action were significant for proA. The mean proportion of proA to total carotenoids (TC) was 44% among crtRB1-based hybrids, while 11% in traditional hybrids. BC was found to be positively correlated with BCX (r = 0.68) and proA (r = 0.98). However, no correlation was observed between proA and grain yield. Several hybrids with >10.0 t/ha grain yield with proA content >10.0 µg/g were identified. This is the first comprehensive study on development of diverse proA rich maize hybrids through marker-assisted pedigree breeding approach. The findings provides sustainable and cost-effective solution to alleviate vitamin-A deficiency.


Subject(s)
Edible Grain/chemistry , Edible Grain/genetics , Inbreeding/methods , Plant Breeding/methods , Provitamins/analysis , Vitamin A/analysis , Zea mays/chemistry , Zea mays/genetics , Alleles , Carotenoids/analysis , Genes, Plant , Genotype , Malnutrition/diet therapy , Plant Proteins/genetics , Polymorphism, Genetic , Vitamin A Deficiency/diet therapy , beta Carotene/analysis
12.
3 Biotech ; 10(3): 121, 2020 Mar.
Article in English | MEDLINE | ID: mdl-32123645

ABSTRACT

Based on C (wild) to T (mutant) transition at amino acid position 1432 bp of lpa1-1 gene, two dominant markers each specific to wild type (LPA1) and mutant (lpa1-1) allele were developed and validated across seven F2 populations. Joint segregation of these markers behaved in co-dominant fashion, clearly distinguishing heterozygote from two other homozygote genotypes. Full length sequence alignment between wild type (LPA2) and mutant (lpa2-1) allele revealed one transition mutation (A to G) and a co-dominant CAPS marker was developed which differentiated all three types of segregants across seven F2 populations. Across populations, segregants with lpa1-1/lpa1-1 (1.77 mg/g) and lpa2-1/lpa2-1 (1.85 mg/g) possessed significantly lower phytic acid compared to LPA1/LPA1 (2.58 mg/g) and LPA2/LPA2 (2.53 mg/g). Inorganic phosphorus was however higher in recessive homozygotes (lpa1-1/lpa1-1: 0.77 mg/g, lpa2-1/lpa2-1: 0.53 mg/g) than the dominant homozygotes (LPA1/LPA1: 0.33 mg/g, LPA2/LPA2: 0.19 mg/g). Overall, homozygous segregants of lpa1-1 and lpa2-1 showed 31% and 27% reduction of phytic acid, respectively. Analysis of phytate and inorganic phosphorous in the maize kernel in these segregating populations confirmed co-segregation of trait and markers specific to lpa1-1 and lpa2-1. This is the first report of the development of breeder-friendly gene-based markers for lpa1-1 and lpa2-1; and it holds great significance for maize biofortification.

SELECTION OF CITATIONS
SEARCH DETAIL
...