Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters











Database
Language
Publication year range
1.
Free Radic Biol Med ; 193(Pt 1): 238-252, 2022 11 20.
Article in English | MEDLINE | ID: mdl-36257485

ABSTRACT

Mitochondrial dysfunction has been reported to be one of the main causes of many diseases including cancer, type2 diabetes, neurodegenerative disorders, cardiac ischemia, sepsis, muscular dystrophy, etc. Under in vitro conditions, Cytochrome C (Cyt C) maintains mitochondrial homeostasis and stimulates apoptosis, along with being a key participant in the life-supporting function of ATP synthesis. Hence, the medicinal importance of Cyt C as catalytic defense is immensely important in various mitochondrial disorders. Here, we have developed a nanomaterial via electrostatically conjugating oxidized single-wall carbon nanotube with Cyt C (Cyt C@cSWCNT) for the exogenous delivery of Cyt C. The chemical and morphological characterization of the developed Cyt C@cSWCNT was done using UV-vis, FTIR, XPS, powder XRD, TGA/DSC, TEM, etc. The developed Cyt C@cSWCNT exhibited bifunctional catalase and peroxidase activity with Km (∼ 642.7 µM and 351.6 µM) and Vmax (∼0.33 µM/s and 2.62 µM/s) values, respectively. Also, through this conjugation Cyt C was found to retain its catalytic activity even at 60 °C, excellent catalytic recyclability (at least up to 3 times), and wider pH activity (pH = 3 to 9). Cyt C@cSWCNT was found to promote intracellular ROS quenching and maintain mitochondrial membrane potential and cellular membrane integrity via Na+/K+ ion homeostasis during the H2O2 stress. Overall the present strategy provides an alternative approach for the exogenous delivery of Cyt C which can be used as nano catalytic medicine.


Subject(s)
Cytochromes c , Nanotubes, Carbon , Humans , Cytochromes c/metabolism , Hydrogen Peroxide/metabolism , Oxidative Stress , Mitochondria/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL