Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Asian Pac J Trop Med ; 5(5): 380-4, 2012 May.
Article in English | MEDLINE | ID: mdl-22546655

ABSTRACT

OBJECTIVE: To study the influence of methanolic and aqueous extract of Withania somnifera (W. somnifera) root on the marble-burying behavior of mice a well-accepted model of obsessive compulsive behavior. METHODS: Mice were divided in different groups (n = 6). Fluoxetine (5, 10, 15 mg/kg), (10, 25, 50, 100 mg/kg) and methanolic extract W. somnifera (MEWS) (10, 25, 50, 100 mg/kg) were administered i.p. 30 min. prior to the assessment of marble burying behavior and locomotor activity. The control group received vehicle of the extract. RESULTS: Administration of aqueous extracts W. somnifera (AEWS) and MEWS (50 mg/kg) successively decreased the marble burying behavior activity without affecting motor activity. This effect of AEWS and MEWS was comparable to standard fluoxetine, ritanserin and parachlorophenylalanine. CONCLUSIONS: W. somnifera extract is effective in treating obsessive compulsive disorder.


Subject(s)
Obsessive-Compulsive Disorder/drug therapy , Phytotherapy/methods , Plant Extracts/pharmacology , Withania , Analysis of Variance , Animals , Anti-Anxiety Agents/pharmacology , Female , Male , Mice , Motor Activity/drug effects , Plant Roots , Ritanserin/pharmacology
2.
Langmuir ; 25(11): 6319-27, 2009 Jun 02.
Article in English | MEDLINE | ID: mdl-19334689

ABSTRACT

Peptide surface modification of poly[(methyl methacrylate-co-hydroxyethyl methacrylate)-b-isobutylene-b-(methyl methacrylate-co-hydroxyethyl methacrylate)] P(MMA-co-HEMA)-b-PIB-b-P(MMA-co-HEMA) triblock copolymers with different HEMA/MMA ratios has been accomplished using an efficient synthetic procedure. The triblock copolymers were reacted with 4-fluorobenzenesulfonyl chloride (fosyl chloride) in pyridine to obtain the activated polymers [poly{(methyl methacrylate-co-fosyloxyethyl methacrylate)-b-isobutylene-b-(methyl methacrylate-co-fosyloxyethyl methacrylate)}] P(MMA-co-FEMA)-b-PIB-b-P(MMA-co-FEMA), with an activating efficiency of 80-90%. The resulting polymers were soluble in chloroform, and their solutions were used to coat thin uniform films with a predetermined thickness on smooth steel surfaces. The presence of reactive activating groups on the film surface was confirmed by X-ray photoelectron spectroscopy (XPS), dye labeling, and confocal laser scanning microscopic studies. Activation of the triblock copolymer films was also achieved under heterogeneous conditions in polar (acetonitrile) and nonpolar (hexanes) media. The extent of activation was controlled by varying the dipping time and polarity of the medium. Peptide attachment was accomplished by immersing the coated steel strips into aqueous buffer solution of Gly-Gly or GYIGSR. XPS and solubility studies revealed successful attachment of peptides to the polymer surface. Virtually all remaining activating groups were successfully replaced in the subsequent step by a treatment with Tris(hydroxymethyl)amino methane in a buffered methanol/water mixture.


Subject(s)
Methacrylates/chemistry , Methylmethacrylate/chemistry , Peptides/chemistry , Polymethyl Methacrylate/chemistry , Biocompatible Materials/chemistry , Chloroform/chemistry , Fluorobenzenes/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure , Polymers/chemistry , Pyridines/chemistry , Surface Properties
3.
Langmuir ; 25(8): 4288-92, 2009 Apr 21.
Article in English | MEDLINE | ID: mdl-19366214

ABSTRACT

Monolayer-protected gold nanoparticle films generally swell and increase their electrical resistance when exposed to organic vapors. Films of gold nanoparticles protected by 1H,1H,2H,2H-perfluorodecanethiol (PFDT) exhibit an anomalous response in which the resistance decreases for all vapors investigated. Electron microscopy illustrates that the PFDT-functionalized gold nanoparticles are hexagonally ordered with an interparticle separation of 3 nm. Quartz crystal microbalance measurements confirm substantial mass uptake, but the relatively large interparticle separation and insulating properties of the gold particles lead to a porous film whose electrical resistance is strongly influenced by changes in the relative permittivity and reversible, vapor-induced changes in film morphology.

4.
Microsc Res Tech ; 70(6): 506-12, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17479983

ABSTRACT

A novel method of patterning surfaces with synthetic or biological polymers is demonstrated. It consists of using microcontact printing to pattern a gold surface with an adsorbate that imparts hydrophilicity; the remainder of the surface is covered with one that imparts hydrophobicity. 16-Mercaptohexadecanoic acid (MHDA) and 1H,1H,2H,2H-perfluorodecanethiol, respectively, have been used as the hydrophilic and hydrophobic adsorbates. This functionalized gold surface then serves as a template for patterning hydrophilic polymers and biomaterials, which are either spin-coated or drop-cast onto the surface. Using this methodology, it is shown by atomic force microscopy, scanning electron microscopy (SEM), and fluorescence microscopy that micron-scale patterns of a poly(ethylene)-block-poly(ethylene oxide) copolymer, poly-L-tryptophan, and bovine collagen can be fabricated, with these mimicking the MHDA patterns. For the block copolymer, it is found by atomic force microscopy that the heights of the polymer patterns decrease as their widths decrease. This is believed to be due to the inherent instability of tall, narrow polymer structures and the tendency of the polymer to minimize its exposed surface area. For poly-L-tryptophan, two different molecular weights of this polyamino acid have been studied, and different morphologies within the patterned regions are observed. While oligomeric poly-L-tryptophan (1,000-5,000 g/mol) gives smooth MHDA-covered patterns, the higher molecular weight (15,000-50,000 g/mol) yields fibrous ones.

5.
Langmuir ; 22(19): 8071-7, 2006 Sep 12.
Article in English | MEDLINE | ID: mdl-16952243

ABSTRACT

Functionalized alkanethiols have been self-assembled on gold to modify the wetting properties of the surface and promote or hinder the adsorption of block copolymers containing both hydrophobic and hydrophilic blocks. X-ray photoelectron spectroscopy (XPS) studies of spin-coated polyethylene-block-poly(ethylene oxide) (PE-b-PEO) copolymers on 16-mercaptohexadecanoic acid (MHDA)-, octadecanethiol (ODT)-, and 1H,1H,2H,2H-perfluorodecanethiol (PFDT)-covered surfaces have been performed. In the case of an 80 wt % PEO block copolymer, spin-coating on a gold surface precovered with MHDA results in a polymer film thick enough to completely attenuate Au 4f photoelectrons; spin-coating on the more hydrophobic ODT and PFDT monolayers leads to significantly thinner polymer films and incomplete attenuation of the gold photoelectrons. The opposite results are observed when a 20 wt % PEO block copolymer is used. Angle-resolved XPS studies of the 80 wt % PEO block copolymer spin-coated onto an MHDA-covered surface indicate that the PE blocks of the polymer segregate to the near-surface region, oriented away from the hydrophilic carboxylic acid tails of the monolayers; the surface concentration of PE is further enhanced by annealing at 90 degrees C. Microcontact printing and dip-pen nanolithography have been used to pattern gold surfaces with MHDA, and the surfaces have been backfilled with ODT or PFDT, such that the unpatterned regions of the surface are covered with hydrophobic monolayers. In the case of backfilling with PFDT, spin-coating the 80 wt % PEO copolymer onto these patterned surfaces and subsequent annealing results in the block copolymer preferentially adsorbing on the MHDA-covered regions and forming well-defined patterns that mimic the MHDA pattern, as determined by scanning electron microscopy and atomic force microscopy. Significantly worse patterning, characterized by micron-sized polymer droplets, results when the surface is backfilled with ODT instead of PFDT. Using PFDT and MHDA, polymer features having widths as small as 500 nm have been formed. These studies demonstrate a novel method to pattern block copolymers with nanoscale resolution.

SELECTION OF CITATIONS
SEARCH DETAIL
...