Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 9(1): 2244, 2019 Feb 19.
Article in English | MEDLINE | ID: mdl-30783192

ABSTRACT

Silicon Microelectromechanical Systems (MEMS) resonators have broad commercial applications for timing and inertial sensing. However, the performance of MEMS resonators is constrained by dissipation mechanisms, some of which are easily detected and well-understood, but some of which have never been directly observed. In this work, we present measurements of the quality factor, Q, for a family of single crystal silicon Lamé-mode resonators as a function of temperature, from 80-300 K. By comparing these Q measurements on resonators with variations in design, dimensions, and anchors, we have been able to show that gas damping, thermoelastic dissipation, and anchor damping are not significant dissipation mechanisms for these resonators. The measured f · Q product for these devices approaches 2 × 1013, which is consistent with the expected range for Akhiezer damping, and the dependence of Q on temperature and geometry is consistent with expectations for Akhiezer damping. These results thus provide the first clear, direct detection of Akhiezer dissipation in a MEMS resonator, which is widely considered to be the ultimate limit to Q in silicon MEMS devices.

2.
Sci Rep ; 3: 3244, 2013 Nov 19.
Article in English | MEDLINE | ID: mdl-24247809

ABSTRACT

Micromechanical resonators are promising replacements for quartz crystals for timing and frequency references owing to potential for compactness, integrability with CMOS fabrication processes, low cost, and low power consumption. To be used in high performance reference application, resonators should obtain a high quality factor. The limit of the quality factor achieved by a resonator is set by the material properties, geometry and operating condition. Some recent resonators properly designed for exploiting bulk-acoustic resonance have been demonstrated to operate close to the quantum mechanical limit for the quality factor and frequency product (Q-f). Here, we describe the physics that gives rise to the quantum limit to the Q-f product, explain design strategies for minimizing other dissipation sources, and present new results from several different resonators that approach the limit.

SELECTION OF CITATIONS
SEARCH DETAIL
...