Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 15: 1355680, 2024.
Article in English | MEDLINE | ID: mdl-38606073

ABSTRACT

Infraspecific floral trait variations may appear in response to elevational differences in alpine plant species. There is enormous information on the selection of such morphs mediated by biotic and/or abiotic variables. Whether such differences contribute to differences in reproductive strategy and mating outcomes is rarely investigated. We investigated these aspects in two distinct elevational floral morphs (Red and Pink) of Rhododendron arboreum Sm. in Western Himalaya. The red morphs occupy the lower elevations while pink morphs the higher elevations. The two morphs differ in floral traits like phenology, dimension, display, quality of floral rewards, and pollinators that happen to influence interaction with available pollinator pool at each elevation. The pink morph exhibits entomophily, while the red ones show ornithophily. Although experimental pollinations established that both the morphs are self-compatible, selfing results in significantly lower fruit-set than either cross- or open-pollinations. The outcrossing rate in the red morph, as determined by using simple sequence repeat (SSR) markers, was higher (tm=0.82) than that in the pink morph (tm=0.76), with a tendency of the latter to be shifting towards mixed-mating strategy. However, the extent of biparental inbreeding was comparable among the two morphs. It is inferred that the differences in the mating outcomes among the morphs in the tree species are linked to those emerging from floral traits and the pollination by different functional groups of floral visitors.

2.
PLoS One ; 19(4): e0302211, 2024.
Article in English | MEDLINE | ID: mdl-38635726

ABSTRACT

Evolutionary maintenance of dioecy is a complex phenomenon and varies by species and underlying pathways. Also, different sexes may exhibit variable resource allocation (RA) patterns among the vegetative and reproductive functions. Such differences are reflected in the extent of sexual dimorphism. Though rarely pursued, investigation on plant species harbouring intermediate sexual phenotypes may reveal useful information on the strategy pertaining to sex-ratios and evolutionary pathways. We studied H. rhamnoides ssp. turkestanica, a subdioecious species with polygamomonoecious (PGM) plants, in western Himalaya. The species naturally inhabits a wide range of habitats ranging from river deltas to hill slopes. These attributes of the species are conducive to test the influence of abiotic factors on sexual dimorphism, and RA strategy among different sexes. The study demonstrates sexual dimorphism in vegetative and reproductive traits. The sexual dimorphism index, aligned the traits like height, number of branches, flower production, and dry-weight of flowers with males while others including fresh-weight of leaves, number of thorns, fruit production were significantly associated with females. The difference in RA pattern is more pronounced in reproductive traits of the male and female plants, while in the PGM plants the traits overlap. In general, habitat conditions did not influence either the extent of sexual dimorphism or RA pattern. However, it seems to influence secondary sex-ratio as females show their significant association with soil moisture. Our findings on sexual dimorphism and RA pattern supports attributes of wind-pollination in the species. The observed extent of sexual dimorphism in the species reiterates limited genomic differences among the sexes and the ongoing evolution of dioecy via monoecy in the species. The dynamics of RA in the species appears to be independent of resource availability in the habitats as the species grows in a resource-limited and extreme environment.


Subject(s)
Hippophae , Sex Characteristics , Reproduction , Pollination , Plants , Resource Allocation
3.
Front Genet ; 13: 876987, 2022.
Article in English | MEDLINE | ID: mdl-36082000

ABSTRACT

CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas (CRISPR-associated) system was initially discovered as an underlying mechanism for conferring adaptive immunity to bacteria and archaea against viruses. Over the past decade, this has been repurposed as a genome-editing tool. Numerous gene editing-based crop improvement technologies involving CRISPR/Cas platforms individually or in combination with next-generation sequencing methods have been developed that have revolutionized plant genome-editing methodologies. Initially, CRISPR/Cas nucleases replaced the earlier used sequence-specific nucleases (SSNs), such as zinc-finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs), to address the problem of associated off-targets. The adaptation of this platform led to the development of concepts such as epigenome editing, base editing, and prime editing. Epigenome editing employed epi-effectors to manipulate chromatin structure, while base editing uses base editors to engineer precise changes for trait improvement. Newer technologies such as prime editing have now been developed as a "search-and-replace" tool to engineer all possible single-base changes. Owing to the availability of these, the field of genome editing has evolved rapidly to develop crop plants with improved traits. In this review, we present the evolution of the CRISPR/Cas system into new-age methods of genome engineering across various plant species and the impact they have had on tweaking plant genomes and associated outcomes on crop improvement initiatives.

4.
J Med Virol ; 94(8): 3521-3539, 2022 08.
Article in English | MEDLINE | ID: mdl-35355267

ABSTRACT

SARS-CoV-2 Omicron with its lineages BA.1, BA.2, and BA.3 has triggered a fresh wave of Covid-19 infections. Though, Omicron has, so far, produced mild symptoms, its genome contains 60 mutations including 37 in the spike protein and 15 in the receptor-binding domain. Thirteen sites conserved in previous SARS-CoV-2 variants carry mutations in Omicron. Many mutations have shown evolution under positive selection. Omicron's giant mutational leap has raised concerns as there are signs of higher virus infectivity rate, pathogenesis, reinfection, and immune evasion. Preliminary studies have reported waning of immunity after two-dose primary vaccine regime, need for the boosters, folds reduction in vaccine effectiveness and neutralizing antibodies even after boosting and significant neutralization resistance with the therapeutic monoclonal, polyclonal, and convalescent antibodies against Omicron. The narrative that "Omicron is mild," therefore, needs time to be tested with a deeper, scientific dwelling into the facts.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Membrane Glycoproteins/genetics , Mutation , Neutralization Tests , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , Viral Envelope Proteins/genetics
5.
Front Cell Dev Biol ; 10: 1072716, 2022.
Article in English | MEDLINE | ID: mdl-36684438

ABSTRACT

Investigated for more than a century now, B chromosomes (Bs) research has come a long way from Bs being considered parasitic or neutral to becoming unselfish and bringing benefits to their hosts. B chromosomes exist as accessory chromosomes along with the standard A chromosomes (As) across eukaryotic taxa. Represented singly or in multiple copies, B chromosomes are largely heterochromatic but also contain euchromatic and organellar segments. Although B chromosomes are derived entities, they follow their species-specific evolutionary pattern. B chromosomes fail to pair with the standard chromosomes during meiosis and vary in their number, size, composition and structure across taxa and ensure their successful transmission through non-mendelian mechanisms like mitotic, pre-meiotic, meiotic or post-meiotic drives, unique non-disjunction, self-pairing or even imparting benefits to the host when they lack drive. B chromosomes have been associated with cellular processes like sex determination, pathogenicity, resistance to pathogens, phenotypic effects, and differential gene expression. With the advancements in B-omics research, novel insights have been gleaned on their functions, some of which have been associated with the regulation of gene expression of A chromosomes through increased expression of miRNAs or differential expression of transposable elements located on them. The next-generation sequencing and emerging technologies will further likely unravel the cellular, molecular and functional behaviour of these enigmatic entities. Amidst the extensive fluidity shown by B chromosomes in their structural and functional attributes, we perceive that the existence and survival of B chromosomes in the populations most likely seem to be a trade-off between the drive efficiency and adaptive significance versus their adverse effects on reproduction.

6.
Theor Appl Genet ; 127(11): 2359-69, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25205130

ABSTRACT

KEY MESSAGE: Genetic locus for tetralocular ovary (tet-o) in Brassica rapa was identified and it was shown that the number of locules and width of silique are associated. Brassica rapa is a highly polymorphic species containing many vegetables and oleiferous types. An interesting group of oleiferous types is the yellow sarson group (subspecies trilocularis) grown mostly in eastern India. This group contains lines that have bilocular ovaries, a defining trait of Brassicaceae, but also lines that have tetralocular ovaries. Yellow sarson lines commonly have high silique width which is further enhanced in the tetralocular types. We mapped the locus influencing tetralocular ovary in B. rapa using three mapping populations (F2, F6 and F7) derived from a cross between Chiifu (subspecies pekinensis, having bilocular ovary) and Tetralocular (having tetralocular ovary). QTL mapping of silique width was undertaken using the three mapping populations and a F2 population derived from a cross between Chiifu and YSPB-24 (a bilocular line belonging to yellow sarson group). Qualitative mapping of the trait governing locule number (tet-o) in B. rapa mapped the locus to linkage group A4. QTL mapping for silique width detected a major QTL on LG A4, co-mapping with the tet-o locus in bilocular/tetralocular cross. This QTL was not detected in the bilocular/bilocular cross. Saturation mapping of the tet-o region with SNP markers identified Bra034340, a homologue of CLAVATA3 of Arabidopsis thaliana, as the candidate gene for locule number. A C → T transition at position 176 of the coding sequence of Bra034340 revealed co-segregation with the tetralocular phenotype. The study of silique related traits is of interest both for understanding evolution under artificial selection and for breeding of cultivated Brassica species.


Subject(s)
Brassica rapa/genetics , Flowers/anatomy & histology , Genes, Plant , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Brassica rapa/anatomy & histology , Chromosome Mapping , Crosses, Genetic , Genes, Recessive , Genetic Linkage , Genetic Loci , Mutation , Phenotype , Polymorphism, Single Nucleotide , Quantitative Trait Loci
SELECTION OF CITATIONS
SEARCH DETAIL
...