Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Semin Cancer Biol ; 80: 157-182, 2022 05.
Article in English | MEDLINE | ID: mdl-32325172

ABSTRACT

Signal transducer and activator of transcription (STAT) proteins are latent transcription factors that reside in the cytoplasm of several types of cells. In canonical signaling, upon stimulation by cytokines and growth factors, STATs get activated and translocate into the nucleus to transcribe target genes. Among STATs, the STAT3 variant has been studied extensively and implicated in diverse human malignancies. Transcriptionally, STAT3 can upregulate the expression of genes associated with cell proliferation, antiapoptosis, prosurvival, angiogenesis, metastasis, and immune evasion. STAT3 can be constitutively activated in a broad range of human cancers including solid as well as hematological tumors and overexpression of STAT3 has been observed in a wide-range of patient-derived tumor tissue samples that may contribute to dismal prognosis. In contrast, blockade of STAT3 activation using inhibitors or knockdown systems can markedly suppress tumor progression, thus highlighting the significance of abrogating STAT3 signaling cascade in cancer therapy. In this review, we have provided a comprehensive overview of mechanisms of STAT3 signal transduction and its endogenous negative modulators, the role of STAT3 in oncogenesis, the interplay of miRNAs in STAT3 signaling, and mechanisms involved in persistent activation of STAT3. Furthermore, the review also provides a detailed overview of STAT3 signaling inhibition by selected natural compounds, which have displayed potent activity in various preclinical cancer model.


Subject(s)
Neoplasms , Signal Transduction , Carcinogenesis , Cell Proliferation , Humans , Neoplasms/drug therapy , Neoplasms/genetics , Neovascularization, Pathologic , STAT3 Transcription Factor/genetics , Signal Transduction/physiology
2.
Saudi J Biol Sci ; 26(7): 1315-1324, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31762590

ABSTRACT

Tomato (Lycopersicon esculentum) is one of the widely grown vegetables worldwide. Fusarium oxysporum f. sp. lycopersici (FOL) is the significant contributory pathogen of tomato vascular wilt. The initial symptoms of the disease appear in the lower leaves gradually, trail by wilting of the plants. It has been reported that FOL penetrates the tomato plant, colonizing and leaving the vascular tissue dark brown, and this discoloration extends to the apex, leading to the plants wilting, collapsing and dying. Therefore, it has been widely accepted that wilting caused by this fungus is the result of a combination of various physiological activities, including the accumulation of fungal mycelia in and around xylem, mycotoxin production, inactivation of host defense, and the production of tyloses; however, wilting symptoms are variable. Therefore, the selection of molecular markers may be a more effective means of screening tomato races. Several studies on the detection of FOL have been carried out and have suggested the potency of the technique for diagnosing FOL. This review focuses on biology and variability of FOL, understanding and presenting a holistic picture of the vascular wilt disease of tomato in relation to disease model, biology, virulence. We conclude that genomic and proteomic approachesare greater tools for identification of informative candidates involved in pathogenicity, which can be considered as one of the approaches in managing the disease.

3.
Lett Appl Microbiol ; 69(5): 358-365, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31508838

ABSTRACT

Leaf blight and fruit rot disease caused by Phomopsis vexans is a devastating disease of brinjal. The detection of P. vexans in plant parts and seeds of brinjal can be complicated, mainly when the inoculum is present at low levels and/or overgrown by fast-growing saprophytic fungi or other seed-borne fungi. A PCR-based diagnostic method was developed with specific primers designed based on sequence data of a region consisting of the 5·8S RNA gene and internal transcribed spacers, ITS 1 and ITS 2 of nuclear ribosomal RNA gene (rDNA) repeats of P. vexans. The efficiency and specificity of primer pairs PvexF/PvexR designed were established by PCR analysis of DNA from P. vexans strains isolated from India and fungal isolates of other genera. A single amplification product of 323-bp was detected from DNA of P. vexans isolates. No cross-reaction was observed with any of the other isolates tested. The specific primers designed and employed in PCR detected P. vexans up to 10 pg from DNA isolated from pure culture. This is the first report on the development of species-specific PCR assay for identification and detection of P. vexans. Thus, PCR-based assay developed is very specific, rapid, confirmatory and sensitive tool for the detection of pathogen P. vexans at early stages. SIGNIFICANCE AND IMPACT OF THE STUDY: Phomopsis vexans is an important seed-borne pathogenic fungus responsible for leaf blight and fruit rot in brinjal. Current detection methods, based on culture and morphological identification is time consuming, laborious and are not always reliable. A PCR-based diagnostic method was developed with species-specific primers designed based on sequence data of a region consisting of the 5·8S RNA gene and internal transcribed spacers, ITS 1 and ITS 2 of nuclear ribosomal RNA gene (rDNA) repeats of P. vexans.


Subject(s)
Ascomycota/isolation & purification , Plant Diseases/microbiology , Polymerase Chain Reaction/methods , Solanum melongena/microbiology , Ascomycota/classification , Ascomycota/genetics , DNA Primers/genetics , DNA, Fungal/genetics , DNA, Ribosomal/genetics , Fruit/microbiology , India , Plant Leaves/microbiology , Seeds/microbiology
4.
Sci Rep ; 6: 21367, 2016 Feb 17.
Article in English | MEDLINE | ID: mdl-26883288

ABSTRACT

The present study aimed at the molecular characterization of pathogenic and non pathogenic F. oxysporum f. sp. lycopersici strains isolated from tomato. The causal agent isolated from symptomatic plants and soil samples was identified based on morphological and molecular analyses. Pathogenicity testing of 69 strains on five susceptible tomato varieties showed 45% of the strains were highly virulent and 30% were moderately virulent. Molecular analysis based on the fingerprints obtained through ISSR indicated the presence of wide genetic diversity among the strains. Phylogenetic analysis based on ITS sequences showed the presence of at least four evolutionary lineages of the pathogen. The clustering of F. oxysporum with non pathogenic isolates and with the members of other formae speciales indicated polyphyletic origin of F. oxysporum f. sp. lycopersici. Further analysis revealed intraspecies variability and nucleotide insertions or deletions in the ITS region among the strains in the study and the observed variations were found to be clade specific. The high genetic diversity in the pathogen population demands for development of effective resistance breeding programs in tomato. Among the pathogenic strains tested, toxigenic strains harbored the Fum1 gene clearly indicating that the strains infecting tomato crops have the potential to produce Fumonisin.


Subject(s)
Fusarium/classification , Fusarium/physiology , Phylogeny , Plant Diseases/microbiology , DNA, Intergenic , Genetic Variation , Genotype , Solanum lycopersicum/microbiology , Microsatellite Repeats , Molecular Typing , Virulence
5.
Life Sci ; 113(1-2): 7-13, 2014 Sep 15.
Article in English | MEDLINE | ID: mdl-25058919

ABSTRACT

AIMS: Oxidative stress plays a key role in several ailments including neurodegenerative conditions. The aim of the study was to demonstrate the effect of rosmarinic acid (RA) in preventing oxidative stress related death of neuronal cell lines. MAIN METHODS: In the present study, we demonstrated direct neuroprotective effect of RA using H2O2-induced oxidative challenge in N2A mouse neuroblastoma cells. The mechanism of neutralization of H2O2-induced toxicity by RA was evaluated using MTT, lactate dehydrogenase, mitochondrial membrane potential (MMP), intracellular ROS, and comet assays. Up-regulation of brain neuronal markers at molecular level was performed by RT-PCR. KEY FINDINGS: Results presented in the paper indicate that H2O2-induced cytotoxicity in N2A cells was suppressed by treatment with RA. Moreover, RA is very effective in attenuating the disruption of lactate dehydrogenase, mitochondrial membrane potential and intracellular ROS. Pretreatment with RA significantly prevents genotoxicity (3.7-fold, p<0.01) and promotes the up-regulation of tyrosine hydroxylase (TH) (4.5-fold, p<0.01), and brain-derived neurotrophic factor (BDNF) genes (5.4-fold, p<0.01) against H2O2-induced cytotoxicity in N2A cells. SIGNIFICANCE: Our results revealed that N2A cells are suitable cellular models to evaluate neuroprotective effects of RA, and suggest that RA may potentially serve as an agent for prevention of several human neurodegenerative diseases caused by oxidative stress.


Subject(s)
Cinnamates/pharmacology , Depsides/pharmacology , Hydrogen Peroxide/chemistry , Neurons/drug effects , Neuroprotective Agents/pharmacology , Animals , Antioxidants/pharmacology , Brain/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Cell Line, Tumor , Comet Assay , Membrane Potential, Mitochondrial/drug effects , Mice , Neurons/metabolism , Oxidative Stress , Reactive Oxygen Species/metabolism , Tetrazolium Salts , Thiazoles , Tyrosine 3-Monooxygenase/metabolism , Rosmarinic Acid
6.
Food Chem Toxicol ; 65: 335-42, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24412706

ABSTRACT

Zearalenone (ZEN) is a mycotoxin from Fusarium species commonly found in many food commodities and are known to cause reproductive disorders, genotoxic and immunosuppressive effects. Although many studies have demonstrated the cytotoxic effects of ZEN, the mechanisms by which ZEN mediates its cytotoxic effects appear to differ according to cell type and route of exposure. Meantime, the available information on the neurotoxic effects of ZEN is very much limited. In the present study we evaluated the role of oxidative stress in ZEN mediated neurotoxicity in SH-SY5Y cells and investigated the possible underlying mechanism. ZEN induced ROS formation and elevated levels of MDA, loss of mitochondrial membrane potential (MMP) and increase in DNA damage in a dose dependent manner as assessed by COMET assay and agarose gel electrophoresis. However, there was no DNA damage by plasmid breakage assay at 6, 12 and 24h time points. DAPI staining showed apoptotic nuclei at 12 and 24h. Further, ZEN treated SH-SY5Y cells showed a marked suppressive effect on the neuronal gene expression. Use of an antioxidant N-acetylcysteine (NAC) reversed the toxin-induced generation of ROS and also attenuated loss of MMP. Collectively, these results suggest that ROS is the main upstream signal leading to increased ZEN mediated neurotoxicity in SH-SY5Y cells.


Subject(s)
Acetylcysteine/pharmacology , Oxidative Stress/drug effects , Zearalenone/toxicity , Base Sequence , Cell Line, Tumor , DNA Primers , Humans , Membrane Potential, Mitochondrial/drug effects , Reactive Oxygen Species/metabolism , Real-Time Polymerase Chain Reaction
7.
Cell Mol Neurobiol ; 34(3): 323-31, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24420496

ABSTRACT

The present study was carried out to investigate the antioxidant and neuroprotective effects of Hyptis suaveolens methanol extract (HSME) using various in vitro systems. The total phenol and flavonoids contents of the HSME were quantified by colorimetric methods. The HSME extract exhibited potent antioxidant activity as determined by 2,20-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) diammonium salt, 2,2-diphenyl-1-picrylhydrazyl, and ferric reducing antioxidant power assays. The neuroprotective activity of HSME was determined on mouse N2A neuroblastoma cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, lactate dehydrogenase, intracellular ROS assays, and upregulation of brain neuronal markers at genetic level. The N2A cells were pretreated with different concentrations (0.5, 1, 1.5, and 2 mg/ml) of the extract and then exposed to H2O2 to induce oxidative stress and neurotoxicity. The survival of the cells treated with different concentrations of HSME and H2O2 increased as compared to cells exposed only to H2O2 (47.3 %) (p < 0.05). The HSME also dose-dependently reduced LDH leakage and intracellular ROS production (p < 0.05). Pretreatment with HSME promotes the upregulation of tyrosine hydroxylase (2.41-fold, p < 0.05), and brain-derived neurotrophic factor genes (2.15-fold, p < 0.05) against H2O2-induced cytotoxicity in N2A cells. Moreover, the HSME showed antioxidant activity and decreased neurotoxicity. These observations suggest that HSME have marked antioxidant and neuroprotective activities.


Subject(s)
Antioxidants/pharmacology , Hyptis , Neuroprotective Agents/pharmacology , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Animals , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/physiology , Dose-Response Relationship, Drug , Mice , Neuroprotective Agents/isolation & purification , Oxidative Stress/physiology , Plant Components, Aerial , Plant Extracts/isolation & purification , Reactive Oxygen Species/metabolism
8.
Arch Microbiol ; 194(11): 923-32, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22722684

ABSTRACT

Alternaria helianthi is an important seed-borne pathogenic fungus responsible for blight disease in sunflower. The current detection methods, which are based on culture and morphological identification, are time-consuming, laborious and are not always reliable. A PCR-based diagnostic method was developed with species-specific primers designed based on the sequence data of a region consisting of the 5.8S RNA gene and internal transcribed spacers-ITS 1 and ITS 2 of nuclear ribosomal RNA gene (rDNA) repeats of A. helianthi. The specificity of the primer pairs AhN1F and AhN1R designed was verified by PCR analysis of DNA from 18 Alternaria helianthi strains isolated from India, 14 non-target Alternaria spp. and 11 fungal isolates of other genera. A single amplification product of 357-bp was detected from DNA of A. helianthi isolates. No cross-reaction was observed with any of the other isolates tested. The detection limit of the PCR method was of 10 pg from template DNA. The primers could also detect the pathogen in infected sunflower seed. This species-specific PCR method provides a quick, simple, powerful and reliable alternative to conventional methods in the detection and identification of A. helianthi. This is the first report of an A. helianthi-specific primer set.


Subject(s)
Alternaria/genetics , Helianthus/microbiology , Polymerase Chain Reaction , Alternaria/isolation & purification , DNA Primers , DNA, Fungal/genetics , DNA, Ribosomal Spacer/genetics , India , Plant Leaves/microbiology , RNA, Ribosomal, 5.8S/genetics , Seeds/microbiology , Sensitivity and Specificity
9.
Appl Microbiol Biotechnol ; 90(5): 1625-39, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21494869

ABSTRACT

Recent developments in genomics have opened up for newer opportunities to study the diversity and classification of fungi. The genus Fusarium contains many plant pathogens that attack diverse agricultural crops. Fusarium spp. are not only pathogenic to plants but are also known as toxin producers that negatively affect animal and human health. The identification of Fusarium species still remains one of the most critical issues in fungal taxonomy, given that the number of species recognized in the genus has been constantly changing in the last century due to the different taxonomic systems. This review focuses of various molecular-based techniques employed to study the diversity of Fusarium species causing diseases in major food crops. An introduction of fusarial diseases and their mycotoxins and molecular-marker-based methods for detection introduce the concept of marker application. Various well-known molecular techniques such as random amplified polymorphic DNA, amplification fragment length polymorphism, etc. to more modern ones such as DNA microarrays, DNA barcoding, and pyrosequencing and their application form the core of the review. Target regions in the genome which can be potential candidates for generation of probes and their use in phylogeny of Fusarium spp. are also presented. The concluding part emphasizes the value of molecular markers for assessing genetic variability and reveals that molecular tools are indispensable for providing information not only of one Fusarium species but on whole fungal community. This will be of extreme value for diagnosticians and researchers concerned with fungal biology, ecology, and genetics.


Subject(s)
Fusarium/genetics , Fusarium/isolation & purification , Genetic Variation , Mycological Typing Techniques/methods , Fungal Proteins/genetics , Fusarium/classification , Fusarium/metabolism , Humans , Molecular Sequence Data , Mycoses/microbiology , Phylogeny , Plant Diseases/microbiology
10.
Plant Dis ; 95(7): 881, 2011 Jul.
Article in English | MEDLINE | ID: mdl-30731707

ABSTRACT

Lablab bean (Lablab purpureus L. Sweet) is a widely cultivated, highly drought tolerant legume vegetable crop grown in diverse environmental conditions worldwide. In India and elsewhere, the young pods are consumed as a fresh vegetable and mature dry seeds are important in the diet of people preferring vegetarian food (2). Small-holding farmers use their own saved seeds for sowing. During October 2008, L. purpureus exhibiting symptoms of stunting, mosaic, vein-banding, vein-clearing, mottling, and blisters suggestive of a viral infection were observed in and around the Mysore District of Karnataka State, India. Incidence of the disease ranged from 1 to 10% in different fields. Symptomatic leaves were collected from fields of Daripura Village, Mysore District, Karnataka. Viruses that were tested by indirect ELISA included Cucumber mosaic virus, Tobacco mosaic virus, Cowpea aphid-borne mosaic virus, Cowpea mosaic virus, Cowpea mottle virus, Southern bean mosaic virus, and Bean common mosaic virus (BCMV). Results of the ELISA tests indicated that all 28 samples collected from different fields were infected with BCMV. Examination of tissue sap from symptomatic plants by electron microscopy revealed flexuous rod-shaped particles (~750 nm long). An immunocapture-reverse transcription (IC-RT)-PCR assay employing degenerate primers for amplifying partial coat protein (CP) and 3'-UTR of potyviruses (1) yielded a ~700-bp product that was cloned and sequenced (GenBank Accession No. HM776637). Sequence identity at the nucleotide level was 96% with BCMV strain NL-7n (GenBank Accession No. GQ456169) infecting common bean from Himachal Pradesh, India. RTPCR was performed with a virus-specific primer pair (FW3-5'-GCAGTAGCACAGATGAAGGCA-3': Rv3-5'-GGTTCTTCCGGCTTACTCATAAACAT-3') designed to amplify 340 bp, the partial coat protein gene of BCMV. All symptomatic L. purpureus field samples and screenhouse-grown seedlings manually inoculated with infected sap were positive for BCMV infection in RT-PCR assay employing specific primers with amplification of a 340-bp product. To our knowledge, this is the first report of BCMV infecting L. purpureus in India. BCMV has also been reported in L. purpureus in Uganda (4) and Nigeria (3). Plants that were confirmed by ELISA to be infected were tagged, and from these plants, seeds were collected and pooled. Four hundred seeds were germinated and a rate of 6.5% seed transmission was determined based on symptoms, ELISA, and PCR. From December 2008 to December 2010, different L. purpureus plantings were monitored for BCMV incidence. Plants infected at different growth stages were tagged and pods were harvested from infected and healthy plants. Data from at least 100 BCMV-infected L. purpureus plants from each of 12 different fields were recorded for yield loss analysis. In terms of number of pods per plant, number of seeds per pod, and seed weight, an average as much as 40% yield loss was recorded from 12 different fields. Because seeds collected from these plants are used for subsequent plantings, these plants may act as virus reservoirs or foci of infection. References: (1) A. S. Langeveld et al. J. Gen. Virol. 72:1531, 1991. (2) M. N. Maruthi et al. Ann. Appl. Biol. 149:187, 2006. (3) O. O. Odedara et al. J. Gen. Virol. 74:322, 2008. (4) T. N. Sengooba et al. Plant Pathol. 46:95, 1997.

SELECTION OF CITATIONS
SEARCH DETAIL
...