Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 130(21): 216501, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37295092

ABSTRACT

We report the experimental observation of dielectric relaxation by quantum critical magnons. Complex capacitance measurements reveal a dissipative feature with a temperature-dependent amplitude due to low-energy lattice excitations and an activation behavior of the relaxation time. The activation energy softens close to a field-tuned magnetic quantum critical point at H=H_{c} and follows single-magnon energy for H>H_{c}, showing its magnetic origin. Our study demonstrates the electrical activity of coupled low-energy spin and lattice excitations, an example of quantum multiferroic behavior.


Subject(s)
Magnetic Fields , Temperature
2.
Science ; 379(6635): 908-912, 2023 Mar 03.
Article in English | MEDLINE | ID: mdl-36862771

ABSTRACT

Understanding the strange metallic behavior that develops at the brink of localization in quantum materials requires probing the underlying electronic charge dynamics. Using synchrotron radiation-based Mössbauer spectroscopy, we studied the charge fluctuations of the strange metal phase of ß-YbAlB4 as a function of temperature and pressure. We found that the usual single absorption peak in the Fermi-liquid regime splits into two peaks upon entering the critical regime. We interpret this spectrum as a single nuclear transition, modulated by nearby electronic valence fluctuations whose long time scales are further enhanced by the formation of charged polarons. These critical charge fluctuations may prove to be a distinct signature of strange metals.

3.
Nat Commun ; 13(1): 4599, 2022 Aug 06.
Article in English | MEDLINE | ID: mdl-35933482

ABSTRACT

Superconductivity in low carrier density metals challenges the conventional electron-phonon theory due to the absence of retardation required to overcome Coulomb repulsion. Here we demonstrate that pairing mediated by energy fluctuations, ubiquitously present close to continuous phase transitions, occurs in dilute quantum critical polar metals and results in a dome-like dependence of the superconducting Tc on carrier density, characteristic of non-BCS superconductors. In quantum critical polar metals, the Coulomb repulsion is heavily screened, while the critical transverse optical phonons decouple from the electron charge. In the resulting vacuum, long-range attractive interactions emerge from the energy fluctuations of the critical phonons, resembling the gravitational interactions of a chargeless dark matter universe. Our estimates show that this mechanism may explain the critical temperatures observed in doped SrTiO3. We provide predictions for the enhancement of superconductivity near polar quantum criticality in two- and three-dimensional materials that can be used to test our theory.

4.
Phys Rev Lett ; 124(23): 237601, 2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32603164

ABSTRACT

Motivated by recent experimental realizations of polar metals with broken inversion symmetry, we explore the emergence of strong correlations driven by criticality when the polar transition temperature is tuned to zero. Overcoming previously discussed challenges, we demonstrate a robust mechanism for coupling between the critical mode and electrons in multiband metals. We identify and characterize several novel interacting phases, including non-Fermi liquids, when band crossings are close to the Fermi level and present their experimental signatures for three generic types of band crossings.

5.
Nat Mater ; 18(3): 197-198, 2019 03.
Article in English | MEDLINE | ID: mdl-30783229
6.
Phys Rev Lett ; 117(15): 157201, 2016 Oct 07.
Article in English | MEDLINE | ID: mdl-27768324

ABSTRACT

The heavy fermion compound URu_{2}Si_{2} continues to attract great interest due to the unidentified hidden order it develops below 17.5 K. The unique Ising character of the spin fluctuations and low-temperature quasiparticles is well established. We present detailed measurements of the angular anisotropy of the nonlinear magnetization that reveal a cos^{4}θ Ising anisotropy both at and above the ordering transition. With Landau theory, we show this implies a strongly Ising character of the itinerant hidden order parameter.

7.
Phys Rev Lett ; 115(17): 177201, 2015 Oct 23.
Article in English | MEDLINE | ID: mdl-26551137

ABSTRACT

In an extensive computational experiment, we test Polyakov's conjecture that under certain circumstances an isotropic Heisenberg model can develop algebraic spin correlations. We demonstrate the emergence of a multispin U(1) order parameter in a Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. The correlations of this relative phase angle are observed to decay algebraically at intermediate temperatures in an extended critical phase. Using finite-size scaling we show that both phase transitions are of the Berezinskii-Kosterlitz-Thouless type, and at lower temperatures we find long-range Z(6) order.

8.
Nature ; 493(7434): 621-6, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23364741

ABSTRACT

The development of collective long-range order by means of phase transitions occurs by the spontaneous breaking of fundamental symmetries. Magnetism is a consequence of broken time-reversal symmetry, whereas superfluidity results from broken gauge invariance. The broken symmetry that develops below 17.5 kelvin in the heavy-fermion compound URu(2)Si(2) has long eluded such identification. Here we show that the recent observation of Ising quasiparticles in URu(2)Si(2) results from a spinor order parameter that breaks double time-reversal symmetry, mixing states of integer and half-integer spin. Such 'hastatic' order hybridizes uranium-atom conduction electrons with Ising 5f(2) states to produce Ising quasiparticles; it accounts for the large entropy of condensation and the magnetic anomaly observed in torque magnetometry. Hastatic order predicts a tiny transverse moment in the conduction-electron 'sea', a colossal Ising anisotropy in the nonlinear susceptibility anomaly and a resonant, energy-dependent nematicity in the tunnelling density of states.

9.
Phys Rev Lett ; 109(23): 237205, 2012 Dec 07.
Article in English | MEDLINE | ID: mdl-23368258

ABSTRACT

We introduce a two-dimensional frustrated Heisenberg antiferromagnet on interpenetrating honeycomb and triangular lattices. Classically the two sublattices decouple, and "order from disorder" drives them into a coplanar state. Applying Friedan's geometric approach to nonlinear sigma models, we obtain the scaling of the spin stiffnesses governed by the Ricci flow of a four-dimensional metric tensor. At low temperatures, the relative phase between the spins on the two sublattices is described by a six-state clock model with an emergent critical phase.

SELECTION OF CITATIONS
SEARCH DETAIL
...