Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119745, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38719029

ABSTRACT

The dynamic interface between invading viral pathogens and programmed cell death (PCD) of the host is a finely regulated process. Host cellular demise at the end of the viral life cycle ensures the release of progeny virions to initiate new infection cycles. Rotavirus (RV), a diarrheagenic virus with double-stranded RNA genome, has been reported to trigger different types of PCD such as apoptosis and pyroptosis in a highly regulated way to successfully disseminate progeny virions. Recently our lab also showed that induction of MLKL-driven programmed necroptosis by RV. However, the host cellular machinery involved in RV-induced necroptosis and the upstream viral trigger responsible for it remained unaddressed. In the present study, the signalling upstream of MLKL-driven necroptosis has been delineated where the involvement of Receptor interacting serine/threonine kinase 3 (RIPK3) and 1 (RIPK1) from the host side and RV non-structural protein 4 (NSP4) as the viral trigger for necroptosis has been shown. Interestingly, RV-NSP4 was found to be an integral component of the necrosome complex by interacting with RIPK1, thereby bypassing the requirement of RIPK1 kinase activity. Subsequently, NSP4-driven elevated cytosolic Ca2+ concentration and Ca2+-binding to NSP4 lead further to RHIM domain-dependent RIPK1-RIPK3 interaction, RIPK3-dependent MLKL phosphorylation, and eventual necroptosis. Overall, this study presents the interplay between RV-NSP4 and the host cellular necrosome complex to induce necroptotic death of host cells.


Subject(s)
Necroptosis , Protein Kinases , Receptor-Interacting Protein Serine-Threonine Kinases , Rotavirus , Viral Nonstructural Proteins , Receptor-Interacting Protein Serine-Threonine Kinases/metabolism , Receptor-Interacting Protein Serine-Threonine Kinases/genetics , Viral Nonstructural Proteins/metabolism , Viral Nonstructural Proteins/genetics , Humans , Protein Kinases/metabolism , Protein Kinases/genetics , Rotavirus/metabolism , Animals , Host-Pathogen Interactions , Toxins, Biological/metabolism
2.
Front Cell Infect Microbiol ; 12: 977799, 2022.
Article in English | MEDLINE | ID: mdl-36189370

ABSTRACT

The biology of the viral life cycle essentially includes two structural and functional entities-the viral genome and protein machinery constituting the viral arsenal and an array of host cellular components which the virus closely associates with-to ensure successful perpetuation. The obligatory requirements of the virus to selectively evade specific host cellular factors while exploiting certain others have been immensely important to provide the platform for designing host-directed antiviral therapeutics. Although the spectrum of host-virus interaction is multifaceted, host factors that particularly influence viral replication have immense therapeutic importance. During lytic proliferation, viruses usually form replication factories which are specialized subcellular structures made up of viral proteins and replicating nucleic acids. These viral niches remain distinct from the rest of the cellular milieu, but they effectively allow spatial proximity to selective host determinants. Here, we will focus on the interaction between the replication compartments of a double stranded RNA virus rotavirus (RV) and the host cellular determinants of infection. RV, a diarrheagenic virus infecting young animals and children, forms replication bodies termed viroplasms within the host cell cytoplasm. Importantly, viroplasms also serve as the site for transcription and early morphogenesis of RVs and are very dynamic in nature. Despite advances in the understanding of RV components that constitute the viroplasmic architecture, knowledge of the contribution of host determinants to viroplasm dynamicity has remained limited. Emerging evidence suggests that selective host determinants are sequestered inside or translocated adjacent to the RV viroplasms. Functional implications of such host cellular reprogramming are also ramifying-disarming the antiviral host determinants and usurping the pro-viral components to facilitate specific stages of the viral life cycle. Here, we will provide a critical update on the wide variety of host cellular pathways that have been reported to regulate the spatial and temporal dynamicity of RV viroplasms. We will also discuss the methods used so far to study the host-viroplasm interactions and emphasize on the potential host factors which can be targeted for therapeutic intervention in the future.


Subject(s)
Rotavirus , Animals , Antiviral Agents/pharmacology , Cell Line , RNA, Double-Stranded/metabolism , Viral Nonstructural Proteins/genetics , Virus Replication
3.
Mol Microbiol ; 117(4): 818-836, 2022 04.
Article in English | MEDLINE | ID: mdl-34954851

ABSTRACT

Reprogramming the host cellular environment is an obligatory facet of viral pathogens to foster their replication and perpetuation. One of such reprogramming events is the dynamic cross-talk between viruses and host cellular death signaling pathways. Rotaviruses (RVs) have been reported to develop multiple mechanisms to induce apoptotic programmed cell death for maximizing viral spread and pathogenicity. However, the importance of non-apoptotic programmed death events has remained elusive in context of RV infection. Here, we report that RV-induced apoptosis accompanies another non-apoptotic mode of programmed cell death pathway called necroptosis to promote host cellular demise at late phase of infection. Phosphorylation of mixed lineage kinase domain-like (MLKL) protein indicative of necroptosis was observed to concur with caspase-cleavage (apoptotic marker) beyond 6 hr of RV infection. Subsequent studies demonstrated phosphorylated-MLKL to oligomerize and to translocate to plasma membrane in RV infected cells, resulting in loss of plasma membrane integrity and release of alarmin molecules e.g., high mobility group box protein 1 (HMGB1) in the extracellular media. Moreover, inhibiting caspase-cleavage and apoptosis could not fully rescue virus-induced cell death but rather potentiated the necroptotic trigger. Interestingly, preventing both apoptosis and necroptosis by small molecules significantly rescued virus-induced host cytopathy by inhibiting viral dissemination.


Subject(s)
Necroptosis , Rotavirus , Apoptosis , Caspases , Phosphorylation
4.
J Med Virol ; 93(11): 6180-6190, 2021 11.
Article in English | MEDLINE | ID: mdl-34138479

ABSTRACT

Human adenovirus-F (HAdV-F) (genotype 40/41) is the second-most leading cause of pediatric gastroenteritis after rotavirus, worldwide, accounting for 2.8%-11.8% of infantile diarrheal cases. Earlier studies across eastern India revealed a shift in the predominance of genotypes from HAdV41 in 2007-09 to HAdV40 in 2013-14. Thus, the surveillance for HAdV-F genotypes in this geographical setting was undertaken over 2017-2020 to analyze the viral evolutionary dynamics. A total of 3882 stool samples collected from children (≤5 years) were screened for HAdV-F positivity by conventional PCR. The hypervariable regions of the hexon and the partial shaft region of long fiber genes were amplified, sequenced, and phylogenetically analyzed with respect to the prototype strains. A marginal decrease in enteric HAdV prevalence was observed (9.04%, n = 351/3882) compared to the previous report (11.8%) in this endemic setting. Children <2 years were found most vulnerable to enteric HAdV infection. Reduction in adenovirus-rotavirus co-infection was evident compared to the sole adenovirus infection. HAdV-F genotypes 40 and 41 were found to co-circulate, but HAdV41 was predominant. HAdV40 strains were genetically conserved, whereas HAdV41 strains accumulated new mutations. On the basis of a different set of mutations in their genome, HAdV41 strains segregated into 2 genome type clusters (GTCs). Circulating HAdV41 strains clustered with GTC1 of the fiber gene, for the first time during this study period. This study will provide much-needed baseline data on the emergence and circulation of HAdV40/41 strains for future vaccine development.


Subject(s)
Adenovirus Infections, Human/virology , Adenoviruses, Human/classification , Adenoviruses, Human/genetics , Gastroenteritis/virology , Phylogeny , Adenovirus Infections, Human/epidemiology , Adenoviruses, Human/isolation & purification , Child, Preschool , Diarrhea/virology , Feces/virology , Female , Gastroenteritis/epidemiology , Genotype , Humans , India/epidemiology , Infant , Infant, Newborn , Male , Rotavirus/genetics , Rotavirus Vaccines , Sequence Analysis, DNA , Vaccine Development
5.
Arch Virol ; 166(3): 801-812, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33464421

ABSTRACT

Accumulation of mutations within the genome is the primary driving force in viral evolution within an endemic setting. This inherent feature often leads to altered virulence, infectivity and transmissibility, and antigenic shifts to escape host immunity, which might compromise the efficacy of vaccines and antiviral drugs. Therefore, we carried out a genome-wide analysis of circulating SARS-CoV-2 strains to detect the emergence of novel co-existing mutations and trace their geographical distribution within India. Comprehensive analysis of whole genome sequences of 837 Indian SARS-CoV-2 strains revealed the occurrence of 33 different mutations, 18 of which were unique to India. Novel mutations were observed in the S glycoprotein (6/33), NSP3 (5/33), RdRp/NSP12 (4/33), NSP2 (2/33), and N (1/33). Non-synonymous mutations were found to be 3.07 times more prevalent than synonymous mutations. We classified the Indian isolates into 22 groups based on their co-existing mutations. Phylogenetic analysis revealed that the representative strains of each group were divided into various sub-clades within their respective clades, based on the presence of unique co-existing mutations. The A2a clade was found to be dominant in India (71.34%), followed by A3 (23.29%) and B (5.36%), but a heterogeneous distribution was observed among various geographical regions. The A2a clade was highly predominant in East India, Western India, and Central India, whereas the A2a and A3 clades were nearly equal in prevalence in South and North India. This study highlights the divergent evolution of SARS-CoV-2 strains and co-circulation of multiple clades in India. Monitoring of the emerging mutations will pave the way for vaccine formulation and the design of antiviral drugs.


Subject(s)
COVID-19/virology , Genetic Variation/genetics , Genome, Viral/genetics , SARS-CoV-2/genetics , Evolution, Molecular , Geography , Humans , India/epidemiology , Mutation/genetics , Mutation Rate , Phylogeny , SARS-CoV-2/classification , SARS-CoV-2/isolation & purification , Silent Mutation/genetics , Whole Genome Sequencing
SELECTION OF CITATIONS
SEARCH DETAIL
...