Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Publication year range
1.
Plant Sci ; 333: 111737, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37217034

ABSTRACT

Methanol is noxious to insect pests, but most plants do not make enough of it to shield themselves from encroaching insects. Methanol emission is known to increase in the instance of herbivory. In the current study, we showed that Aspergillus niger pectin methylesterase over-expression increases methanol emission and confers resistance to polyphagous insect pests on transgenic cotton plants by impeding the possible methanol detoxification pathways. Transgenic plants emitted ∼11 fold higher methanol displaying insect mortality of 96% and 93% in Helicoverpa armigera and Spodoptera litura, respectively. The larvae were unable to survive and finish their life cycle and the surviving larvae exhibited severe growth retardation. Insects try to detoxify methanol via catalase, carboxylesterase and cytochrome P450 monooxygenase enzymes, amongst which cytochrome P450 plays a major role in oxidizing methanol to formaldehyde and formaldehyde to formic acid, which is broken down into carbon dioxide and water. In our study, catalase and esterase enzymes were found to be upregulated, but cytochrome P450 monooxygenase levels were not much affected. Leaf disc assays and In-planta bioassays also showed 50-60% population reduction in the sap sucking pests, such as Bemisia tabaci and Phenacoccus solenopsis. These findings imply that elevated methanol emissions confer resistance in plants against chewing and sap-sucking pests by tampering the methanol detoxification pathways. Such mechanism will be useful in imparting expansive resistance against pests in plants.


Subject(s)
Hemiptera , Moths , Animals , Methanol/metabolism , Catalase/metabolism , Gossypium/genetics , Gossypium/metabolism , Insecta/metabolism , Moths/metabolism , Plants, Genetically Modified/metabolism , Larva/metabolism , Cytochrome P-450 Enzyme System/genetics , Cytochrome P-450 Enzyme System/metabolism
2.
Indian J Crit Care Med ; 25(3): 305-309, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33790512

ABSTRACT

Introduction: Chronic obstructive pulmonary disease (COPD) patients in hypercapnic respiratory failure require multiple arterial blood gas (ABG) analysis for monitoring. It is a painful, invasive, and expensive investigation. This study was aimed at finding an agreement between end-tidal carbon dioxide (ETCO2, a noninvasive modality) and arterial carbon dioxide (PaCO2) in COPD patients with acute exacerbation on mechanical ventilation. Materials and methods: A prospective observational study was conducted in COPD patients who required mechanical ventilation. ETCO2 was recorded by mainstream capnography along with ABG analysis. An agreement between PaCO2 and ETCO2 was assessed. The effect of various factors on correlation was also studied. Results: A total of 100 patients with COPD in hypercapnic respiratory failure were included. Seventy-three percentage of patients were managed on invasive mechanical ventilation (IMV). The mean ETCO2 and PaCO2 were 48.66 ± 15.57 mm Hg and 75.52 ± 21.9 mm Hg, respectively. There was a significant correlation between PaCO2 and ETCO2 values (r = 0.82, 95% confidence interval of r = 0.78-0.86, p <0.0001). The Bland-Altman analysis shows the mean bias as -19.4 (95% limits of agreement = -40.0-1.1). Pearson's correlation coefficient was 0.84 in intubated patients and 0.58 in patients on noninvasive ventilation (NIV). Pearson's correlation coefficient between PaCO2 and ETCO2 in subjects with consolidation, cardiomegaly, hypotension, and raised pulmonary artery pressures was 0.78, 0.86, 0.85, and 0.86, respectively. Conclusion: Mainstream ETCO2 measurement accurately predicts the PaCO2 in COPD patients on IMV. However, for patients on NIV, ETCO2 is insufficient in monitoring PaCO2 levels due to weak correlation. Clinical significance: ETCO2 can be used as a noninvasive modality in intensive care unit for monitoring the PaCO2 in COPD patients on IMV. This can reduce the requirement of arterial blood sampling to a minimum number, in turn, reducing the cost of the treatment and discomfort to the patients. How to cite this article: Tyagi D, Govindagoudar MB, Jakka S, Chandra S, Chaudhry D. Correlation of PaCO2 and ETCO2 in COPD Patients with Exacerbation on Mechanical Ventilation. Indian J Crit Care Med 2021;25(3):305-309.

3.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-700146

ABSTRACT

Objective: To undertake metabolite profiling of various plant parts of Citrullus colocynthis, and assess antioxidant and wound healing activities of fractions for therapeutical applications. Methods: Extracts from leaves, stem, root, fruit pulp and seeds were analyzed using gas chromatography-mass spectrometry and high performance liquid chromatography. Variation in antioxidant potential was assayed by 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging assay. The extract with highest antioxidant potential was subjected on in-vivo wound healing activity using excision wound model. Results: Metabolite profiling of Citrullus colocynthis identified 70 chemically diverse metabolites from different plant parts by using a combination of GC-MS and HPLC. Concentration of colocynthin, a principal active secondary metabolite, ranged from 3.15 mg/g dry weight to 242.00 mg/g dry weight, the lowest being in leaves and highest in fruit pulp. DPPH radical scavenging activity of free radical (IC50) ranged from 196.44 μg/mL in fruit pulp to 413.33 μg/mL in leaves tissues. Significant wound contraction and increase in hydroxyproline content of granulation tissue were observed with ointment formulated from methanolic extract of fruit pulp. Conclusions: The study indicates that the methanol extract of Citrullus colocynthis fruit pulp when applied topically may promote wound contraction in rat model attributable to the accumulation of colocynthin. The high quantity of colocynthin (242.00 mg/g dry weight) and substantial concentration of 2,4-di-tert butyl phenol (3.2%), squalene (4.2%) and δ-tocopherol (2.5%) make this plant to provide new opportunities for development of medicinal, nutraceutical and dietary supplements with optimized functionality.

SELECTION OF CITATIONS
SEARCH DETAIL
...