Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 145(23): 12920-12927, 2023 Jun 14.
Article in English | MEDLINE | ID: mdl-37267070

ABSTRACT

Magnetic interactions in combination with nontrivial band structures can give rise to several exotic physical properties such as a large anomalous Hall effect, the anomalous Nernst effect, and the topological Hall effect (THE). Antiferromagnetic (AFM) materials exhibit the THE due to the presence of nontrivial spin structures. EuCuAs crystallizes in a hexagonal structure with an AFM ground state (Néel temperature ∼ 16 K). In this work, we observe a large topological Hall resistivity of ∼7.4 µΩ-cm at 13 K which is significantly higher than the giant topological Hall effect of Gd2PdSi3 (∼3 µΩ-cm). Neutron diffraction experiments reveal that the spins form a transverse conical structure during the metamagnetic transition, resulting in the large THE. In addition, by controlling the magnetic ordering structure of EuCuAs with an external magnetic field, several fascinating topological states such as Dirac and Weyl semimetals have been revealed. These results suggest the possibility of spintronic devices based on antiferromagnets with tailored noncoplanar spin configurations.

2.
Adv Mater ; 34(40): e2203725, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36028167

ABSTRACT

Single crystals of SnSe have gained considerable attention in thermoelectrics due to their unprecedented thermoelectric performance. However, polycrystalline SnSe is more favorable for practical applications due to its facile chemical synthesis procedure, processability, and scalability. Though the thermoelectric figure of merit (zT) of p-type bulk SnSe polycrystals has reached >2.5, zT of n-type counterpart is still lower and lies around ≈1.5. Herein, record high zT of 2.0 in n-type polycrystalline SnSe0.92  + x mol% MoCl5 (x = 0-3) samples is reported, when measured parallel to the spark plasma sintering pressing direction due to the simultaneous optimization of n-type carrier concentration and enhanced phonon scattering by incorporating modular nano-heterostructures in SnSe matrix. Modular nanostructures of layered intergrowth [(SnSe)1.05 ]m (MoSe2 )n like compounds embedded in SnSe matrix scatters the phonons significantly leading to an ultra-low lattice thermal conductivity (κlat ) of ≈0.26 W m-1 K-1 at 798 K in SnSe0.92  + 3 mol% MoCl5 . The 2D layered modular intergrowth compound resembles the nano-heterostructure and their periodicity of 1.2-2.6 nm in the SnSe matrix matches the phonon mean free path of SnSe, thereby blocking the heat carrying phonons, which result in low κlat and ultra-high thermoelectric performance in n-type SnSe.

3.
ACS Nano ; 16(1): 7-14, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34919391

ABSTRACT

Two-dimensional layered tin selenide (SnSe) has attracted immense interest in thermoelectrics due to its ultralow lattice thermal conductivity and high thermoelectric performance. To date, the majority of thermoelectric studies of SnSe have been based on single crystals. However, because synthesizing SnSe single crystals is an expensive, time-consuming process that requires high temperatures and because SnSe single crystals have relatively weaker mechanical stability, they are not favorable for scaling up synthesis, commercialization, or practical applications. As a result, research on nanocrystalline SnSe that can be produced in large quantities by simple and low-temperature solution-phase synthesis is needed. In this Perspective, we discuss the progress in thermoelectric properties of SnSe with a particular emphasis on nanocrystalline SnSe, which is grown in solution. We first describe the state-of-the-art high-performance single crystal and polycrystals of SnSe and their importance and drawbacks and discuss how nanocrystalline SnSe can solve some of these challenges. We illustrate different solution-phase synthesis procedures to produce various SnSe nanostructures and discuss their thermoelectric properties. We also highlight a unique solution-phase synthesis technique to prepare CdSe-coated SnSe nanocomposites and its unprecedented thermoelectric figure of merit (ZT) of 2.2 at 786 K, as reported in this issue of ACS Nano. In general, solution synthesis showed excellent control over nanoscale grain growth, and nanocrystalline SnSe shows ultralow thermal conductivity due to strong phonon scattering by the nanoscale grain boundaries. Finally, we offer insight into the opportunities and challenges associated with nanocrystalline SnSe synthesized by the solution route and its future in thermoelectric energy conversion.

4.
Chem Sci ; 12(39): 13074-13082, 2021 Oct 13.
Article in English | MEDLINE | ID: mdl-34745538

ABSTRACT

Recently, single-crystals of tin selenide (SnSe) have drawn immense attention in the field of thermoelectrics due to their anisotropic layered crystal structure and ultra-low lattice thermal conductivity. Layered SnSe has an orthorhombic crystal structure (Pnma) at ambient conditions. However, the cubic rock-salt phase (Fm3̄m) of SnSe can only be stabilized at very high pressure and thus, the experimental realization of the cubic phase remains elusive. Herein, we have successfully stabilized the high-pressure cubic rock-salt phase of SnSe by alloying with AgBiSe2 (0.30 ≤ x ≤ 0.80) at ambient temperature and pressure. The orthorhombic polycrystalline phase is stable in (SnSe)1-x (AgBiSe2) x in the composition range of 0.00 ≤ x < 0.28, which corresponds to narrow band gap semiconductors, whereas the band gap closes upon increasing the concentration of AgBiSe2 (0.30 ≤ x < 0.70) leading to the cubic rock-salt structure. We confirmed the stabilization of the cubic structure at x = 0.30 and associated changes in the electronic structure using first-principles theoretical calculations. The pristine cubic SnSe exhibited the topological crystalline insulator (TCI) quantum phase, but the cubic (SnSe)1-x (AgBiSe2) x (x = 0.33) showed a semi-metallic electronic structure with overlapping conduction and valence bands. The cubic polycrystalline (SnSe)1-x (AgBiSe2) x (x = 0.30) sample showed n-type conduction at room temperature, while the orthorhombic (SnSe)1-x (AgBiSe2) x (0.00 ≤ x < 0.28) samples retained p-type character. Thus, by optimizing the electronic structure and the thermoelectric properties of polycrystalline SnSe, a high zT of 1.3 at 823 K has been achieved in (SnSe)0.78(AgBiSe2)0.22.

5.
J Am Chem Soc ; 141(15): 6141-6145, 2019 Apr 17.
Article in English | MEDLINE | ID: mdl-30946576

ABSTRACT

Recently single crystals of layered SnSe have created a paramount importance in thermoelectrics owing to their ultralow lattice thermal conductivity and high thermoelectric figure of merit ( zT). However, nanocrystalline or polycrystalline SnSe offers a wide range of thermoelectric applications for the ease of its synthesis and machinability. Here, we demonstrate high zT of ∼2.1 at 873 K in two-dimensional nanoplates of Ge-doped SnSe synthesized by a simple hydrothermal route followed by spark plasma sintering (SPS). Anisotropic measurements also show a high zT of ∼1.75 at 873 K parallel to the SPS pressing direction. Ge doping (3 mol %) in SnSe nanoplates significantly enhances the p-type carrier concentration, which results in high electrical conductivity and power factor of ∼5.10 µW/cm K2 at 873 K. High lattice anharmonicity, nanoscale grain boundaries, and Ge precipitates in the SnSe matrix synergistically give rise to the ultralow lattice thermal conductivity of ∼0.18 W/mK at 873 K.

SELECTION OF CITATIONS
SEARCH DETAIL
...