Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
1.
JCI Insight ; 9(10)2024 May 22.
Article in English | MEDLINE | ID: mdl-38775154

ABSTRACT

MAPK activating death domain (MADD) is a multifunctional protein regulating small GTPases RAB3 and RAB27, MAPK signaling, and cell survival. Polymorphisms in the MADD locus are associated with glycemic traits, but patients with biallelic variants in MADD manifest a complex syndrome affecting nervous, endocrine, exocrine, and hematological systems. We identified a homozygous splice site variant in MADD in 2 siblings with developmental delay, diabetes, congenital hypogonadotropic hypogonadism, and growth hormone deficiency. This variant led to skipping of exon 30 and in-frame deletion of 36 amino acids. To elucidate how this mutation causes pleiotropic endocrine phenotypes, we generated relevant cellular models with deletion of MADD exon 30 (dex30). We observed reduced numbers of ß cells, decreased insulin content, and increased proinsulin-to-insulin ratio in dex30 human embryonic stem cell-derived pancreatic islets. Concordantly, dex30 led to decreased insulin expression in human ß cell line EndoC-ßH1. Furthermore, dex30 resulted in decreased luteinizing hormone expression in mouse pituitary gonadotrope cell line LßT2 but did not affect ontogeny of stem cell-derived GnRH neurons. Protein-protein interactions of wild-type and dex30 MADD revealed changes affecting multiple signaling pathways, while the GDP/GTP exchange activity of dex30 MADD remained intact. Our results suggest MADD-specific processes regulate hormone expression in pancreatic ß cells and pituitary gonadotropes.


Subject(s)
Insulin-Secreting Cells , Insulin-Secreting Cells/metabolism , Humans , Animals , Mice , Male , Gonadotrophs/metabolism , Female , RNA Splice Sites/genetics , Cell Line , Insulin/metabolism , Siblings , Exons/genetics , rab3 GTP-Binding Proteins/metabolism , rab3 GTP-Binding Proteins/genetics , Hypogonadism/genetics , Hypogonadism/metabolism , Hypogonadism/pathology
2.
Am J Reprod Immunol ; 91(5): e13853, 2024 May.
Article in English | MEDLINE | ID: mdl-38706383

ABSTRACT

BACKGROUND: The amniotic membrane (AM) has shown immense potential in repairing wounds due to its great regenerative qualities. Although the role of AM as a biological scaffold in repairing wounds has been studied well, the tissue regenerative potential of AM-derived mesenchymal stem cells (MSCs) and conditioned media (CM) derived from it remains to be discovered as of now. Here, we examined the wound healing abilities of fresh and frozen thawed rabbit AM (rAM) along with the MSCs and their lyophilised CM in rabbits challenged with skin wounds. METHODS: To elucidate the role of rAM-MSCs and its CM in repairing the wound, we isolated it from the freshly derived placenta and characterised their differentiation potential by performing an in vitro tri-lineage differentiation assay besides other standard confirmations. We compared the wound repair capacities of rAM-MSCs and lyophilised CM with the fresh and cryopreserved AM at different timelines by applying them to excision wounds created in rabbits. RESULTS: By monitoring wound contractions and tissue histology of wounded skin at different time points after the application, we observed that rAM-MSCs and rAM-MSC-derived CM significantly promoted wound closure compared to the control group. We also observed that the wound closure capacity of rAM-MSCs and rAM-MSC-derived CM is as efficient as fresh and cryopreserved rAM. CONCLUSION: Our findings suggest that rAM-MSCs and rAM-MSC derived CM can be effectively used to treat skin wounds in animals and correctly delivered to the damaged tissue using AM as a bioscaffold, either fresh or frozen.


Subject(s)
Amnion , Mesenchymal Stem Cells , Wound Healing , Animals , Rabbits , Female , Mesenchymal Stem Cells/cytology , Cell Differentiation , Culture Media, Conditioned/pharmacology , Mesenchymal Stem Cell Transplantation/methods , Skin/injuries , Skin/pathology , Pregnancy , Disease Models, Animal , Cells, Cultured , Transplantation, Homologous
3.
Diabetologia ; 2024 May 14.
Article in English | MEDLINE | ID: mdl-38743124

ABSTRACT

AIMS/HYPOTHESIS: Regulatory factor X 6 (RFX6) is crucial for pancreatic endocrine development and differentiation. The RFX6 variant p.His293LeufsTer7 is significantly enriched in the Finnish population, with almost 1:250 individuals as a carrier. Importantly, the FinnGen study indicates a high predisposition for heterozygous carriers to develop type 2 and gestational diabetes. However, the precise mechanism of this predisposition remains unknown. METHODS: To understand the role of this variant in beta cell development and function, we used CRISPR technology to generate allelic series of pluripotent stem cells. We created two isogenic stem cell models: a human embryonic stem cell model; and a patient-derived stem cell model. Both were differentiated into pancreatic islet lineages (stem-cell-derived islets, SC-islets), followed by implantation in immunocompromised NOD-SCID-Gamma mice. RESULTS: Stem cell models of the homozygous variant RFX6-/- predictably failed to generate insulin-secreting pancreatic beta cells, mirroring the phenotype observed in Mitchell-Riley syndrome. Notably, at the pancreatic endocrine stage, there was an upregulation of precursor markers NEUROG3 and SOX9, accompanied by increased apoptosis. Intriguingly, heterozygous RFX6+/- SC-islets exhibited RFX6 haploinsufficiency (54.2% reduction in protein expression), associated with reduced beta cell maturation markers, altered calcium signalling and impaired insulin secretion (62% and 54% reduction in basal and high glucose conditions, respectively). However, RFX6 haploinsufficiency did not have an impact on beta cell number or insulin content. The reduced insulin secretion persisted after in vivo implantation in mice, aligning with the increased risk of variant carriers to develop diabetes. CONCLUSIONS/INTERPRETATION: Our allelic series isogenic SC-islet models represent a powerful tool to elucidate specific aetiologies of diabetes in humans, enabling the sensitive detection of aberrations in both beta cell development and function. We highlight the critical role of RFX6 in augmenting and maintaining the pancreatic progenitor pool, with an endocrine roadblock and increased cell death upon its loss. We demonstrate that RFX6 haploinsufficiency does not affect beta cell number or insulin content but does impair function, predisposing heterozygous carriers of loss-of-function variants to diabetes. DATA AVAILABILITY: Ultra-deep bulk RNA-seq data for pancreatic differentiation stages 3, 5 and 7 of H1 RFX6 genotypes are deposited in the Gene Expression Omnibus database with accession code GSE234289. Original western blot images are deposited at Mendeley ( https://data.mendeley.com/datasets/g75drr3mgw/2 ).

4.
Food Chem Toxicol ; 183: 114331, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38061569

ABSTRACT

The present study was designed to evaluate the testicular toxicity of triazophos in rats and to check the ameliorative effect of nano-quercetin against triazophos-induced toxicity. Nano-quercetin was synthesized from quercetin and characterized. Male Wistar rats were divided into seven groups. The control group received olive oil as a vehicle orally. The high-dose triazophos group and the low-dose triazophos group received 1/10th LD50 of triazophos (7.6 mg/kg) and 1/20th LD50 of triazophos (3.8 mg/kg), respectively. Two groups of animals were dosed with quercetin and nano-quercetin, both at 50 mg/kg body weight orally. The final two groups received high-dose triazophos with co-administration of quercetin and nano-quercetin, respectively. Triazophos disrupted the male endocrine axis by reducing the levels of steroidogenic enzymes 3-ß-HSD and 17-ß-HSD in testicular cells, further reducing FSH and testosterone. Also, triazophos increased the reactive oxygen species, induced lipid peroxidation, decreased the mitochondrial membrane potential, and elevated the number of apoptotic cells in rat testes. Nano-quercetin ameliorated the testicular oxidative stress and apoptotic and endocrine parameters more efficiently than quercetin. Besides, nano-quercetin alleviated the histopathological and biochemical alterations of triazophos. It is concluded that nano-quercetin has higher anti-oxidant efficacy than quercetin in protecting rats against triazophos-induced testicular toxicity.


Subject(s)
Quercetin , Testis , Rats , Male , Animals , Rats, Wistar , Antioxidants/metabolism , Oxidative Stress , Testosterone/metabolism , Apoptosis
5.
Cell Rep ; 42(8): 112970, 2023 Aug 29.
Article in English | MEDLINE | ID: mdl-37556323

ABSTRACT

Pancreatic islets regulate blood glucose homeostasis through the controlled release of insulin; however, current metabolic models of glucose-sensitive insulin secretion are incomplete. A comprehensive understanding of islet metabolism is integral to studies of endocrine cell development as well as diabetic islet dysfunction. Human pluripotent stem cell-derived islets (SC-islets) are a developmentally relevant model of human islet function that have great potential in providing a cure for type 1 diabetes. Using multiple 13C-labeled metabolic fuels, we demonstrate that SC-islets show numerous divergent patterns of metabolite trafficking in proposed insulin release pathways compared with primary human islets but are still reliant on mitochondrial aerobic metabolism to derive function. Furthermore, reductive tricarboxylic acid cycle activity and glycolytic metabolite cycling occur in SC-islets, suggesting that non-canonical coupling factors are also present. In aggregate, we show that many facets of SC-islet metabolism overlap with those of primary islets, albeit with a retained immature signature.

7.
Med Leg J ; : 258172231164293, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37096368

ABSTRACT

Self-strangulation is an uncommon method of suicide. The body was found lying on the floor in front of the "multi-gym" inside the gym in the basement of the deceased's house. It was initially presented as a case of sudden death, but during autopsy, a ligature mark was noted over the deceased's neck and bilateral temporal regions along with findings supportive of ligature strangulation. A visit was made to the crime scene. A plausible reconstruction of events suggested that the deceased had used the metallic rope of the multi-gym for this purpose. The rope was connected to weights from one end, passed through a pulley and connected to a rod at the other end. Its width and pattern matched with the ligature mark. The deceased wound the rod end of the rope around his neck and entangled the rod to the rope over his head so that the weight attached to the other end tightened the rope around his neck and strangled him. As the rope unravelled, gravity caused the body to fall to the ground while the rope with the rod resumed its normal position due to the pull of the weight attached at the opposite end. This case is reported for its rarity and the unusual means used to commit suicide by self-strangulation.

8.
Tissue Cell ; 82: 102053, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36907044

ABSTRACT

The present study evaluated healing potential of bone marrow-derived mesenchymal stem cells (BM-MSCs) and BM-MSCs-conditioned medium (BM-MSCs-CM) for acute and subacute injuries in the rabbit peripheral nerve injury model. The regenerative capacity of MSCs was evaluated in 40 rabbits divided into eight groups, four groups each for acute and subacute injury models. BM-MSCs and BM-MSCS-CM were prepared by isolating allogenic bone marrow from the iliac crest. After inducing sciatic nerve crush injury, different treatments consisting of PBS, Laminin, BM-MSCs + laminin, and BM-MSCS-CM + laminin were used on the day of injury in the acute injury model and after ten days of crush injury in the subacute groups. The parameters studied included: pain, total neurological score, gastrocnemius muscle weight and volume ratio, histopathology of the sciatic nerve and gastrocnemius muscle, and scanning electron microscopy (SEM). Findings indicate that BM-MSCs and BM-MSCS-CM have augmented the regenerative capacity in acute and subacute injury groups with a slightly better improvement in the subacute groups than the animals in acute injury groups. Histopathology data revealed different levels of regenerative process undergoing in the nerve. Neurological observations, gastrocnemius muscle evaluation, muscle histopathology, and the SEM results depicted better healing in animals treated with BM-MSCs and BM-MSCS-CM. With this data, it could be concluded that BM-MSCs support the healing of injured peripheral nerves, and the BM-MSCS-CM does accelerate the healing of acute and subacute peripheral nerve injuries in rabbits. However, stem cell therapy may be indicated during the subacute phase for better results.


Subject(s)
Mesenchymal Stem Cells , Peripheral Nerve Injuries , Animals , Rabbits , Culture Media, Conditioned/pharmacology , Peripheral Nerve Injuries/therapy , Laminin , Bone Marrow
9.
Animals (Basel) ; 12(22)2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36428366

ABSTRACT

Understanding the molecular cross-talk between the embryo and uterine endometrium is crucial for the improvement of IVF outcomes. The present work was undertaken to investigate the effect of pre-implantation embryo on the expression profile of immune-related genes in uterine epithelial cells (UECs) and PBMCs in buffalo. UECs were isolated from slaughterhouse-derived non-gravid uteri, cultured ex vivo and characterized, and buffalo embryos were produced in vitro from slaughterhouse-derived ovaries. Embryos co-cultured with steroid-treated UECs significantly stimulated (p < 0.05) the relative mRNA abundance of PTGS2, ISG15, OAS1, MX2, IFNAR1 and IFNAR2 in UECs while they significantly suppressed the mRNA expression of NFkßIA, NFkß2, TNFα and IL1B, with no significant change in TGFß1 and IL10 in the co-culture of embryos with UECs. In vitro treatment of PBMCs with conditioned media (CM) derived from embryos as well as UEC−embryo co-culture upregulated the mRNA abundance of ISG15, TGFß1, PTGS2OAS1, MX2 and STAT1 while it downregulated IL17 and TNFα expression. The expression of IFNAR1 and IFNAR2 was elevated in PBMCs cultured in embryo-derived CM, but there was no significant change in PBMCs cultured in UEC−embryo co-culture CM. Thus, it can be concluded that the developing embryo and its secretions modulate the expression of immune responses by inducing an anti-inflammatory action in uterine epithelial cells for acceptance of the semi-allogenic embryo in the uterus to sustain pregnancy in buffalo.

10.
Vet Q ; 42(1): 224-230, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36336651

ABSTRACT

Osteoarthritis is a progressive degenerative disease affecting joints. It is associated with structural and functional changes that cause lameness and pain in dogs. Mesenchymal stem cells (MSCs) are considered an ideal therapeutic candidate for treating inflammatory musculoskeletal conditions due to their paracrine and immunomodulatory characteristics. They are delivered intravenously or as intra-articular injections for treating canine osteoarthritis. However, ex vivo studies have confirmed that the osteoarthritic synovial fluid is cytotoxic to cultured MSCs. Therefore, intra-articular transplantation of viable MSCs should be considered counterproductive since it minimizes cellular viability. Similarly, the intravenous administration of MSCs limits the therapeutic effects on the organ of interest since most of the administered cells get trapped in the lungs. Therefore, cell-free therapeutic strategies such as conditioned media and extracellular vesicles (EVs) can potentially become the future of MSC-based therapy in managing canine osteoarthritis. It overcomes the limitations of MSC-based therapy, such as tumor differentiation, immunogenicity, and pulmonary embolization, and has advantages like low immunogenicity and off-shelf availability. In addition, they eliminate problems such as low cell survival, transmission of infections, and unpredictable behavior of the transplanted MSCs, thereby acting as a safe alternative to cell-based therapeutics. However, very limited data is available on the efficacy and safety of cell-free therapy using MSCs for managing canine osteoarthritis. Therefore, large-scale, multicentric, randomized clinical controlled trials are required to establish the therapeutic efficacy and safety of MSC-based cell-free therapy in clinical cases of canine osteoarthritis.


Subject(s)
Dog Diseases , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Osteoarthritis , Dogs , Animals , Mesenchymal Stem Cell Transplantation/veterinary , Osteoarthritis/therapy , Osteoarthritis/veterinary , Mesenchymal Stem Cells/pathology , Injections, Intra-Articular/veterinary , Pain/veterinary , Dog Diseases/therapy
11.
Nat Commun ; 13(1): 6363, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36289205

ABSTRACT

Type 1 diabetes (T1D) is an autoimmune disease that results in the destruction of insulin producing pancreatic ß-cells. One of the genes associated with T1D is TYK2, which encodes a Janus kinase with critical roles in type-Ι interferon (IFN-Ι) mediated intracellular signalling. To study the role of TYK2 in ß-cell development and response to IFNα, we generated TYK2 knockout human iPSCs and directed them into the pancreatic endocrine lineage. Here we show that loss of TYK2 compromises the emergence of endocrine precursors by regulating KRAS expression, while mature stem cell-islets (SC-islets) function is not affected. In the SC-islets, the loss or inhibition of TYK2 prevents IFNα-induced antigen processing and presentation, including MHC Class Ι and Class ΙΙ expression, enhancing their survival against CD8+ T-cell cytotoxicity. These results identify an unsuspected role for TYK2 in ß-cell development and support TYK2 inhibition in adult ß-cells as a potent therapeutic target to halt T1D progression.


Subject(s)
Diabetes Mellitus, Type 1 , Insulins , Humans , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/metabolism , Insulins/metabolism , Interferon-alpha/pharmacology , Interferon-alpha/metabolism , Proto-Oncogene Proteins p21(ras)/metabolism , TYK2 Kinase/genetics , TYK2 Kinase/metabolism , Insulin-Secreting Cells
12.
Theriogenology ; 194: 13-26, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36183493

ABSTRACT

Buffalo spermatozoa are vulnerable to cryo-injuries due to inherent deficiency of endogenous antioxidants, high polyunsaturated fatty acids (PUFA) content in plasma membrane and low cholesterol/phospholipid (C/P) ratio. Humanin is a potent cytoprotective agent that protects the cells against oxidative stress and apoptosis. The present study was designed to establish the presence of Humanin in buffalo and effect of Humanin supplementation on freezability of buffalo spermatozoa. Indirect immunofluorescence test revealed presence of Humanin in ejaculated and epididymal spermatozoa, and, elongated spermatids and interstitial space in the testicular tissue section. Humanin levels in seminal plasma were significantly and positively correlated with sperm concentration and individual progressive motility (IPM) in good (n = 22; IPM >70%) and poor (n = 10; IPM <50%) quality ejaculates. For supplementation studies, a total of 24 ejaculates (IPM ≥70%) were collected and each ejaculate was then divided into four aliquots. First aliquot was diluted with egg yolk-tris-glycerol (EYTG) extender without Humanin and served as control group (Group I). Rest three aliquots were diluted with extender containing 2 (Group II), 5 (Group III) and 10 µM Humanin (Group IV), respectively. Semen was cryopreserved using standard protocol and evaluated at pre-freeze for lipid peroxidation (LPO) and post-thaw stages for spermatozoa kinematics, LPO, mitochondrial membrane potential (MMP), capacitation, apoptotic status and DNA integrity. The treatment group that showed best results (5 µM) was compared with control group for in vitro fertility assessment by homologous zona binding assay. The LPO levels were lower (p < 0.05) in 5 and 10 µM Humanin supplemented group. The MMP and DNA integrity were higher (p < 0.05) in 5 µM group than other groups. F-pattern was higher (p < 0.05) and B-pattern was lower (p < 0.05) in 5 and 10 µM Humanin supplemented groups. Lower apoptotic and higher viable spermatozoa (p < 0.05) were observed in 5 µM Humanin group. The mean number of spermatozoa bound to zona pellucida was higher (p < 0.05) in 5 µM Humanin treated group than the control group. The study established the presence of Humanin in buffalo spermatozoa and seminal plasma for very first time and concluded that Humanin supplementation at 5 µM concentration improves the freezability and in vitro fertility of buffalo spermatozoa.


Subject(s)
Bison , Semen Preservation , Male , Animals , Buffaloes , Semen Preservation/veterinary , Semen Preservation/methods , Cryoprotective Agents/pharmacology , Sperm Motility , Semen , Spermatozoa , Cryopreservation/veterinary , Cryopreservation/methods , Intracellular Signaling Peptides and Proteins , Semen Analysis/veterinary , DNA
13.
STAR Protoc ; 3(4): 101711, 2022 12 16.
Article in English | MEDLINE | ID: mdl-36136756

ABSTRACT

We present here a robust and reliable protocol by which to differentiate pancreatic islet-like aggregates (SC-islets) from human pluripotent stem cells. The 7-stage protocol mimics developmental patterning factors that induce endocrine lineage formation and spans monolayer, microwell, and aggregate suspension culture. The SC-islets demonstrate dynamic glucose-sensitive insulin secretion and an endocrine cell composition similar to those of primary human islets. SC-islets generated using this optimized protocol are suitable for in vitro modeling of islet cell pathophysiology and therapeutic applications. For complete details on the use and execution of this protocol, please refer to Balboa et al. (2022).


Subject(s)
Islets of Langerhans , Pluripotent Stem Cells , Humans , Cell Differentiation/physiology , Glucose/metabolism , Insulin Secretion
14.
Life Sci Alliance ; 5(12)2022 08 10.
Article in English | MEDLINE | ID: mdl-35948367

ABSTRACT

Characterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues. The IGW web application produces output graphs for a particular gene of interest. In IGW, 284 differentially expressed genes (DEGs) were identified in T2D donor islets compared with controls. Forty percent of DEGs showed cell-type enrichment and a large proportion significantly co-expressed with islet hormone-encoding genes; glucagon (<i>GCG</i>, 56%), amylin (<i>IAPP</i>, 52%), insulin (<i>INS</i>, 44%), and somatostatin (<i>SST</i>, 24%). Inhibition of two DEGs, <i>UNC5D</i> and <i>SERPINE2</i>, impaired glucose-stimulated insulin secretion and impacted cell survival in a human ß-cell model. The exploratory use of IGW could help designing more comprehensive functional follow-up studies and serve to identify therapeutic targets in T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Islets of Langerhans , Diabetes Mellitus, Type 2/genetics , Glucagon/genetics , Glucagon/metabolism , Humans , Insulin/genetics , Insulin/metabolism , Islets of Langerhans/metabolism , Serpin E2/metabolism
15.
Front Endocrinol (Lausanne) ; 13: 802351, 2022.
Article in English | MEDLINE | ID: mdl-35813646

ABSTRACT

Aims/Hypothesis: Caused by biallelic mutations of the gene encoding the transcription factor RFX6, the rare Mitchell-Riley syndrome (MRS) comprises neonatal diabetes, pancreatic hypoplasia, gallbladder agenesis or hypoplasia, duodenal atresia, and severe chronic diarrhea. So far, sixteen cases have been reported, all with a poor prognosis. This study discusses the multidisciplinary intensive clinical management of 4 new cases of MRS that survived over the first 2 years of life. Moreover, it demonstrates how the mutations impair the RFX6 function. Methods: Clinical records were analyzed and described in detail. The functional impact of two RFX6R181W and RFX6V506G variants was assessed by measuring their ability to transactivate insulin transcription and genes that encode the L-type calcium channels required for normal pancreatic beta-cell function. Results: All four patients were small for gestational age (SGA) and prenatally diagnosed with duodenal atresia. They presented with neonatal diabetes early in life and were treated with intravenous insulin therapy before switching to subcutaneous insulin pump therapy. All patients faced recurrent hypoglycemic episodes, exacerbated when parenteral nutrition (PN) was disconnected. A sensor-augmented insulin pump therapy with a predictive low-glucose suspension system was installed with good results. One patient had a homozygous c.1517T>G (p.Val506Gly) mutation, two patients had a homozygous p.Arg181Trp mutation, and one patient presented with new compound heterozygosity. The RFX6V506G and RFX6R181W mutations failed to transactivate the expression of insulin and genes that encode L-type calcium channel subunits required for normal pancreatic beta-cell function. Conclusions/Interpretation: Multidisciplinary and intensive disease management improved the clinical outcomes in four patients with MRS, including adjustment of parenteral/oral nutrition progression and advanced diabetes technologies. A better understanding of RFX6 function, in both intestine and pancreas cells, may break ground in new therapies, particularly regarding the use of drugs that modulate the enteroendocrine system.


Subject(s)
Diabetes Mellitus , Infant, Newborn, Diseases , Diabetes Mellitus/diagnosis , Duodenal Obstruction , Gallbladder Diseases , Humans , Infant, Newborn , Insulin/genetics , Intestinal Atresia , Mutation , Regulatory Factor X Transcription Factors/genetics , Regulatory Factor X Transcription Factors/metabolism
16.
Ann Med Surg (Lond) ; 77: 103542, 2022 May.
Article in English | MEDLINE | ID: mdl-35638047

ABSTRACT

Background and objective: Adipose-derived mesenchymal stem cells (AdMSC) are multipotent adult mesenchymal cells isolated and cultured from the stromal vascular fraction derived from adipose tissue. The present study was conducted to analyze the global trends in AdMSC research using bibliometric and visual analysis tools. Methods: The literature search was done on February 13, 2022, using appropriate keywords and inclusion-exclusion criteria from the Scopus database. The extracted data were retrospectively analyzed and visualized using Bibliometrics and R packages and VOSviewer. Results: Preliminary analysis identified 1569 documents from the Scopus database published between 2005 and 2021. The average citations received per document was 26.51, whereas the average citations per year per document was 3.347. In addition, the selected documents had an h-index value of 90. China was the most productive country, whereas Seoul National University (South Korea) was identified as the most productive institute/university in AdMSC research. In addition, the National Natural Science Foundation of China funded the most research studies in AdMSC research. Conclusion: The findings from this study indicate a progressive increase in interest among the research community towards AdMSC, suggesting promising prospects in the coming years.

18.
Nat Biotechnol ; 40(7): 1042-1055, 2022 07.
Article in English | MEDLINE | ID: mdl-35241836

ABSTRACT

Transplantation of pancreatic islet cells derived from human pluripotent stem cells is a promising treatment for diabetes. Despite progress in the generation of stem-cell-derived islets (SC-islets), no detailed characterization of their functional properties has been conducted. Here, we generated functionally mature SC-islets using an optimized protocol and benchmarked them comprehensively against primary adult islets. Biphasic glucose-stimulated insulin secretion developed during in vitro maturation, associated with cytoarchitectural reorganization and the increasing presence of alpha cells. Electrophysiology, signaling and exocytosis of SC-islets were similar to those of adult islets. Glucose-responsive insulin secretion was achieved despite differences in glycolytic and mitochondrial glucose metabolism. Single-cell transcriptomics of SC-islets in vitro and throughout 6 months of engraftment in mice revealed a continuous maturation trajectory culminating in a transcriptional landscape closely resembling that of primary islets. Our thorough evaluation of SC-islet maturation highlights their advanced degree of functionality and supports their use in further efforts to understand and combat diabetes.


Subject(s)
Islets of Langerhans Transplantation , Islets of Langerhans , Pluripotent Stem Cells , Animals , Glucose/metabolism , Humans , Insulin/metabolism , Islets of Langerhans/metabolism , Islets of Langerhans Transplantation/methods , Mice , Pluripotent Stem Cells/metabolism
19.
Tissue Cell ; 76: 101768, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35257943

ABSTRACT

BACKGROUND AND AIM: This work was conducted to compare the therapeutic potential of undifferentiated and osteogenic differentiated canine (xenogeneic) and guinea pig (allogeneic) BMSCs in fracture healing using guinea pig as a model. MATERIALS AND METHODS: A well-characterized homogenous population of third passage mesenchymal stem cells of bone marrow origin was used in all the experiments. MSCs from both the species, i.e., canine and guinea pigs, were differentiated and characterized. Expression of MHC I and II along with co-stimulatory molecules was assessed based on relative mRNA expression. The osteogenic differentiated and undifferentiated MSCs from both species were used for evaluating fracture healing in the guinea pig model. The healing potential was assessed based on radiographic, histopathology, and clinical observations. RESULTS: BMSCs from both species expressed MSC surface antigens and successfully differentiated to osteogenic, chondrogenic, and adipogenic lineages. The mRNA expression of class I and II MHC molecules in all the three lineages showed no significant (p > 0.05) differences after differentiating to adipogenic, chondrogenic, and osteogenic lineages. Radiographic and clinical examination revealed that MSCs therapy significantly improved bone fracture healing with a non-significant (p > 0.05) difference between differentiated and undifferentiated BMSCs. In addition, allogeneic MSCs therapy performed better than xenogeneic therapy. CONCLUSION: MSCs remained hypo immunogenic after differentiation and have comparable fracture healing potential though allogeneic MSCs have better therapeutic potential than xenogenic MSCs.


Subject(s)
Bone Marrow Cells , Mesenchymal Stem Cells , Animals , Bone Marrow , Cell Differentiation , Cells, Cultured , Dogs , Fracture Healing , Guinea Pigs , Osteogenesis , RNA, Messenger/metabolism
20.
Res Vet Sci ; 145: 116-124, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35183849

ABSTRACT

Cell lineage determination during mesenchymal stem cell (MSCs) differentiation is a highly orchestrated process involving diverse signaling pathways and distinct classes of regulatory molecules. Bone morphogenetic protein (BMP) signaling positively influence the osteoblast lineage determination, whereas the Notch signaling may have a dimorphic action. Effective regenerative therapy for repairing bone defects requires ample knowledge of the signaling pathways responsible for the differentiation of MSCs. To elucidate the signaling pathways that drives canine bone-marrow derived MSCs towards osteogenic lineage, the current work was focused on BMP and Notch signaling. Target genes of Runx2, Smad4 and γ-secretase were silenced by short hairpin RNA (shRNA) in canine MSCs. Evaluation of the effect of gene silencing on in-vitro osteogenic differentiation potential was done by quantitative polymerase chain reaction (qPCR) for osteoblastic markers (Osteocalcin and Osteopontin) and Alizarin red S staining for the extracellular deposition of calcium. Silencing of Runx2 significantly reduced the osteocalcin and osteopontin gene expression while a similar trend was observed in the case of smad 4 silencing and their combination groups, but there was no difference found in Hey 1 expression. Runx2 and Smad4 silencing groups showed very less positive staining with Alizarin red S staining, whereas knockdown of γ-secretase and its combination groups showed reverse results as that of Runx2 and Smad4. Runx2 plays an indispensable part in directing the canine mesenchymal stem cells towards osteogenic lineage. Also, Smad-mediated BMP signaling induced the osteoblast-specific gene expression, whereas the notch pathway negatively regulated the osteogenic differentiation of canine MSCs.


Subject(s)
Mesenchymal Stem Cells , Osteogenesis , Amyloid Precursor Protein Secretases/metabolism , Amyloid Precursor Protein Secretases/pharmacology , Animals , Bone Morphogenetic Protein 2/genetics , Bone Morphogenetic Protein 2/metabolism , Bone Morphogenetic Protein 2/pharmacology , Cell Differentiation/genetics , Cells, Cultured , Core Binding Factor Alpha 1 Subunit/genetics , Core Binding Factor Alpha 1 Subunit/metabolism , Core Binding Factor Alpha 1 Subunit/pharmacology , Dogs , Osteoblasts/metabolism , Osteocalcin
SELECTION OF CITATIONS
SEARCH DETAIL
...