Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
bioRxiv ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38746155

ABSTRACT

More than 60 human disorders have been linked to unstable expansion of short tandem repeat (STR) tracts. STR length and the extent of DNA methylation is linked to disease pathology and can be mosaic in a cell type-specific manner in several repeat expansion disorders. Mosaic phenomenon have been difficult to study to date due to technical bias intrinsic to repeat sequences and the need for multi-modal measurements at single-allele resolution. Nanopore long-read sequencing accurately measures STR length and DNA methylation in the same single molecule but is cost prohibitive for studies assessing a target locus across multiple experimental conditions or patient samples. Here, we describe MASTR-seq, M ultiplexed A nalysis of S hort T andem R epeats, for cost-effective, high-throughput, accurate, multi-modal measurements of DNA methylation and STR genotype at single-allele resolution. MASTR-seq couples long-read sequencing, Cas9-mediated target enrichment, and PCR-free multiplexed barcoding to achieve a >ten-fold increase in on-target read mapping for 8-12 pooled samples in a single MinION flow cell. We provide a detailed experimental protocol and computational tools and present evidence that MASTR-seq quantifies tract length and DNA methylation status for CGG and CAG STR loci in normal-length and mutation-length human cell lines. The MASTR-seq protocol takes approximately eight days for experiments and one additional day for data processing and analyses. Key points: We provide a protocol for MASTR-seq: M ultiplexed A nalysis of S hort T andem R epeats using Cas9-mediated target enrichment and PCR-free, multiplexed nanopore sequencing. MASTR-seq achieves a >10-fold increase in on-target read proportion for highly repetitive, technically inaccessible regions of the genome relevant for human health and disease.MASTR-seq allows for high-throughput, efficient, accurate, and cost-effective measurement of STR length and DNA methylation in the same single allele for up to 8-12 samples in parallel in one Nanopore MinION flow cell.

2.
Cell ; 186(26): 5840-5858.e36, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38134876

ABSTRACT

Short tandem repeat (STR) instability causes transcriptional silencing in several repeat expansion disorders. In fragile X syndrome (FXS), mutation-length expansion of a CGG STR represses FMR1 via local DNA methylation. Here, we find megabase-scale H3K9me3 domains on autosomes and encompassing FMR1 on the X chromosome in FXS patient-derived iPSCs, iPSC-derived neural progenitors, EBV-transformed lymphoblasts, and brain tissue with mutation-length CGG expansion. H3K9me3 domains connect via inter-chromosomal interactions and demarcate severe misfolding of TADs and loops. They harbor long synaptic genes replicating at the end of S phase, replication-stress-induced double-strand breaks, and STRs prone to stepwise somatic instability. CRISPR engineering of the mutation-length CGG to premutation length reverses H3K9me3 on the X chromosome and multiple autosomes, refolds TADs, and restores gene expression. H3K9me3 domains can also arise in normal-length iPSCs created with perturbations linked to genome instability, suggesting their relevance beyond FXS. Our results reveal Mb-scale heterochromatinization and trans interactions among loci susceptible to instability.


Subject(s)
Fragile X Syndrome , Humans , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Trinucleotide Repeat Expansion , DNA Methylation , Mutation , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism
3.
NPJ Aging Mech Dis ; 7(1): 20, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-34471123

ABSTRACT

The rodents of hystricomorpha and sciuromorpha suborders exhibit remarkably lower incidence of cancer. The underlying genetic basis remains obscure. We report a convergent evolutionary split of human 3p21.31, a locus hosting a large number of tumour-suppressor genes (TSGs) and frequently deleted in several tumour types, in hystrico- and sciuromorphs. Analysis of 34 vertebrate genomes revealed that the synteny of 3p21.31 cluster is functionally and evolutionarily constrained in most placental mammals, but exhibit large genomic interruptions independently in hystricomorphs and sciuromorphs, owing to relaxation of underlying constraints. Hystrico- and sciuromorphs, therefore, escape from pro-tumorigenic co-deletion of several TSGs in cis. The split 3p21.31 sub-clusters gained proximity to proto-oncogene clusters from elsewhere, which might further nullify pro-tumorigenic impact of copy number variations due to co-deletion or co-amplification of genes with opposing effects. The split of 3p21.31 locus coincided with the accelerated rate of its gene expression and the body mass evolution of ancestral hystrico- and sciuromorphs. The genes near breakpoints were associated with the traits specific to hystrico- and sciuromorphs, implying adaptive significance. We conclude that the convergently evolved chromosomal interruptions of evolutionarily constrained 3p21.31 cluster might have impacted evolution of cancer resistance, body mass variation and ecological adaptations in hystrico- and sciuromorphs.

4.
Cell Rep ; 33(4): 108302, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33113374

ABSTRACT

The mechanisms that guide the clonally stable random mono-allelic expression of autosomal genes remain enigmatic. We show that (1) mono-allelically expressed (MAE) genes are assorted and insulated from bi-allelically expressed (BAE) genes through CTCF-mediated chromatin loops; (2) the cell-type-specific dynamics of mono-allelic expression coincides with the gain and loss of chromatin insulator sites; (3) dosage of MAE genes is more sensitive to the loss of chromatin insulation than that of BAE genes; and (4) inactive alleles of MAE genes are significantly more insulated than active alleles and are de-repressed upon CTCF depletion. This alludes to a topology wherein the inactive alleles of MAE genes are insulated from the spatial interference of transcriptional states from the neighboring bi-allelic domains via CTCF-mediated loops. We propose that CTCF functions as a typical insulator on inactive alleles, but facilitates transcription through enhancer-linking on active allele of MAE genes, indicating widespread allele-specific regulatory roles of CTCF.


Subject(s)
CCCTC-Binding Factor/metabolism , Genes/genetics , Genomics/methods , Humans , Mitosis
5.
BMC Genomics ; 21(1): 175, 2020 Feb 22.
Article in English | MEDLINE | ID: mdl-32087673

ABSTRACT

BACKGROUND: Proximity ligation based techniques, like Hi-C, involve restriction digestion followed by ligation of formaldehyde cross-linked chromatin. Distinct chromatin states can impact the restriction digestion, and hence the visibility in the contact maps, of engaged loci. Yet, the extent and the potential impact of digestion bias remain obscure and under-appreciated in the literature. RESULTS: Through analysis of 45 Hi-C datasets, lamina-associated domains (LADs), inactive X-chromosome in mammals, and polytene bands in fly, we first established that the DNA in condensed chromatin had lesser accessibility to restriction endonucleases used in Hi-C as compared to that in decondensed chromatin. The observed bias was independent of known systematic biases, was not appropriately corrected by existing computational methods, and needed an additional optimization step. We then repurposed this bias to identify novel condensed domains outside LADs, which were bordered by insulators and were dynamically associated with the polycomb mediated epigenetic and transcriptional states during development. CONCLUSIONS: Our observations suggest that the corrected one-dimensional read counts of existing Hi-C datasets can be reliably repurposed to study the gene-regulatory dynamics associated with chromatin condensation and decondensation, and that the existing Hi-C datasets should be interpreted with cautions.


Subject(s)
Chromatin Assembly and Disassembly , Chromatin/metabolism , Chromosome Positioning , Genomics/methods , Polytene Chromosomes , X Chromosome , Animals , Chromatin Immunoprecipitation , Drosophila/genetics , Epigenomics , Humans , Mice , Sequence Analysis, DNA
6.
FEBS Lett ; 594(8): 1339-1353, 2020 04.
Article in English | MEDLINE | ID: mdl-31930486

ABSTRACT

Knocking out a chromatin factor often does not alter the transcription of its binding targets. What explains the observed disconnect between binding and effect? We hypothesize that this discrepancy could be associated with the role of chromatin factors in maintaining genetic and epigenetic integrity at promoters, and not necessarily with transcription. Through re-analysis of published datasets, we present several lines of evidence that support our hypothesis and deflate the popular assumptions. We also tested the hypothesis through mutation accumulation assays on yeast knockouts of chromatin factors. Altogether, the proposed hypothesis presents a simple explanation for the global discord between chromatin factor binding and effect. Future work in this direction might fortify the hypothesis and elucidate the underlying mechanisms.


Subject(s)
Chromatin/metabolism , Genome, Fungal , Saccharomyces cerevisiae/genetics , Chromatin/genetics , Gene Ontology , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription Initiation Site
7.
Genetics ; 211(4): 1239-1254, 2019 04.
Article in English | MEDLINE | ID: mdl-30796012

ABSTRACT

Conserved noncoding elements (CNEs) have a significant regulatory influence on their neighboring genes. Loss of proximity to CNEs through genomic rearrangements can, therefore, impact the transcriptional states of the cognate genes. Yet, the evolutionary implications of such chromosomal alterations have not been studied. Through genome-wide analysis of CNEs and the cognate genes of representative species from five different mammalian orders, we observed a significant loss of genes' linear proximity to CNEs in the rat lineage. The CNEs and the genes losing proximity had a significant association with fetal, but not postnatal, brain development as assessed through ontology terms, developmental gene expression, chromatin marks, and genetic mutations. The loss of proximity to CNEs correlated with the independent evolutionary loss of fetus-specific upregulation of nearby genes in the rat brain. DNA breakpoints implicated in brain abnormalities of germline origin had significant representation between a CNE and the gene that exhibited loss of proximity, signifying the underlying developmental tolerance of genomic rearrangements that allowed the evolutionary splits of CNEs and the cognate genes in the rodent lineage. Our observations highlighted a nontrivial impact of chromosomal rearrangements in shaping the evolutionary dynamics of mammalian brain development and might explain the loss of brain traits, like cerebral folding of the cortex, in the rodent lineage.


Subject(s)
Brain/metabolism , Conserved Sequence , Evolution, Molecular , Gene Expression Regulation, Developmental , Regulatory Sequences, Nucleic Acid/genetics , Animals , Brain/embryology , Cattle , Dogs , Gene Rearrangement , Horses , Humans , Neurogenesis , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...