Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 14(9)2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38732335

ABSTRACT

BACKGROUND: In planning radiotherapy treatments, computed tomography (CT) has become a crucial tool. CT scans involve exposure to ionizing radiation, which can increase the risk of cancer and other adverse health effects in patients. Ionizing radiation doses for medical exposure must be kept "As Low As Reasonably Achievable". Very few articles on guidelines for radiotherapy-computed tomography scans are available. This paper reviews the current literature on radiation dose optimization based on the effective dose and diagnostic reference level (DRL) for head, neck, and pelvic CT procedures used in radiation therapy planning. This paper explores the strategies used to optimize radiation doses, and high-quality images for diagnosis and treatment planning. METHODS: A cross-sectional study was conducted on 300 patients with head, neck, and pelvic region cancer in our institution. The DRL, effective dose, volumetric CT dose index (CTDIvol), and dose-length product (DLP) for the present and optimized protocol were calculated. DRLs were proposed for the DLP using the 75th percentile of the distribution. The DLP is a measure of the radiation dose received by a patient during a CT scan and is calculated by multiplying the CT dose index (CTDI) by the scan length. To calculate a DRL from a DLP, a large dataset of DLP values obtained from a specific imaging procedure must be collected and can be used to determine the median or 75th-percentile DLP value for each imaging procedure. RESULTS: Significant variations were found in the DLP, CTDIvol, and effective dose when we compared both the standard protocol and the optimized protocol. Also, the optimized protocol was compared with other diagnostic and radiotherapy CT scan studies conducted by other centers. As a result, we found that our institution's DRL was significantly low. The optimized dose protocol showed a reduction in the CTDIvol (70% and 63%), DLP (60% and 61%), and effective dose (67% and 62%) for both head, neck, and pelvic scans. CONCLUSIONS: Optimized protocol DRLs were proposed for comparison purposes.

2.
Diagnostics (Basel) ; 13(6)2023 Mar 11.
Article in English | MEDLINE | ID: mdl-36980380

ABSTRACT

Background: In August 2017, the European Commission awarded the "European Study on Clinical Diagnostic Reference Levels (DRL) for X-ray Medical Imaging" project to the European Society of Radiology to provide up-to-date Diagnostic Reference Levels based on clinical indications. This work aimed to conduct an extensive literature review by analyzing the most recent studies published and the data provided by the National Competent Authorities to understand the current situation regarding Diagnostic Reference Levels based on clinical indications for Radiation Therapy Computed Tomography. Objective: To review the literature on established DRLs and methodologies for establishing Diagnostic reference levels in radiation therapy planning computed tomography (RTCT). Methods: Eligibility criteria: A cohort study (observational design) reporting DRLs in adult patients undergoing computed tomography (CT) for radiation therapy for the region head and neck or pelvis were included. The comprehensive literature searches for the relevant studies published between 2000 and 2021 were performed using PubMed, Scopus, CINHAL, Web of Science, and ProQuest. Results: Three hundred fifty-six articles were identified through an extensive literature search. Sixty-eight duplicate reports were removed. The title and abstract of 288 studies were assessed and excluded if they did not meet the inclusion criteria. Sixteen of 288 articles were selected for full-text screening (studies conducted between 2000 and 2021). Five articles were included in the review after the full-text screening. Conclusions: A globally approved standard protocol that includes scanning techniques, dose measurement method, and DRL percentile needs to be established to make a valuable and accurate comparison with international DRLs.

3.
Reprod Sci ; 28(1): 134-143, 2021 01.
Article in English | MEDLINE | ID: mdl-32734563

ABSTRACT

This pilot study was conducted to explore the benefits of using a centrifugation-free device based on the migration-sedimentation (MS) technique over centrifugation-based techniques in selecting competent spermatozoa, as compared with using split human semen samples. Ejaculates from 35 men undergoing semen analysis were split into four parts where one part was retained as the neat (NE) and the other three parts were subjected to sperm selection by using migration-sedimentation (MS), density gradient (DG) separation, and swim-up (SU) techniques. Sperm functional characteristics along with mitochondrial integrity, tyrosine phosphorylation, acrosome reaction, and ultrastructure were measured. The ability of selection techniques in reducing spontaneous and radiation-induced sperm DNA lesions was assessed by the TUNEL assay. In results, MS-selected spermatozoa had higher viability (P < 0.001), longevity in terms of total motility at the end of 6 and 18 h post-extraction (P < 0.001), and mitochondrial integrity (P < 0.001) compared with those selected by DG. Furthermore, spontaneous DNA lesions were significantly reduced in MS and SU fractions compared with NE (P < 0.001). Similarly, radiation-induced sperm DNA lesions were significantly lower in MS and SU fractions (P < 0.001) compared with DG. Ultrastructural analysis using scanning electron microscopy suggested a moderate, non-significant increase in the number of spermatozoa with normal head and mid-piece in MS fraction compared with other methods. In conclusion, the MS-based device offers a centrifugation-free, efficient, and reliable sperm selection method, making it suitable for partially equipped intra-uterine insemination (IUI) laboratories or office IUI programmes. Further research should focus on the safety and clinical usefulness of the device in assisted conception programmes in general and IUI in specific.


Subject(s)
Cell Separation/instrumentation , DNA Damage , Infertility, Male/diagnosis , Specimen Handling/instrumentation , Sperm Motility , Spermatozoa/ultrastructure , Adult , Ejaculation , Equipment Design , Humans , Infertility, Male/metabolism , Infertility, Male/pathology , Male , Microscopy, Electron, Scanning , Pilot Projects , Spermatozoa/metabolism
4.
PLoS One ; 8(7): e69927, 2013.
Article in English | MEDLINE | ID: mdl-23922858

ABSTRACT

BACKGROUND: Cytogenetic studies have demonstrated that low levels of chronic radiation exposure can potentially increase the frequency of chromosomal aberrations and aneuploidy in somatic cells. Epidemiological studies have shown that health workers occupationally exposed to ionizing radiation bear an increased risk of hematological malignancies. OBJECTIVES: To find the influence of occupational radiation exposure on semen characteristics, including genetic and epigenetic integrity of spermatozoa in a chronically exposed population. METHODS: This cross sectional study included 134 male volunteers of which 83 were occupationally exposed to ionizing radiation and 51 were non-exposed control subjects. Semen characteristics, sperm DNA fragmentation, aneuploidy and incidence of global hypermethylation in the spermatozoa were determined and compared between the non-exposed and the exposed group. RESULTS: Direct comparison of the semen characteristics between the non-exposed and the exposed population revealed significant differences in motility characteristics, viability, and morphological abnormalities (P<0.05-0.0001). Although, the level of sperm DNA fragmentation was significantly higher in the exposed group as compared to the non-exposed group (P<0.05-0.0001), the incidence of sperm aneuploidy was not statistically different between the two groups. However, a significant number of hypermethylated spermatozoa were observed in the exposed group in comparison to non-exposed group (P<0.05). CONCLUSIONS: We provide the first evidence on the detrimental effects of occupational radiation exposure on functional, genetic and epigenetic integrity of sperm in health workers. However, further studies are required to confirm the potential detrimental effects of ionizing radiation in these subjects.


Subject(s)
DNA Damage/radiation effects , Radiation, Ionizing , Semen/cytology , Spermatozoa/pathology , Adult , Comet Assay , DNA Fragmentation , Humans , In Situ Hybridization, Fluorescence , Male , Occupational Exposure/adverse effects
SELECTION OF CITATIONS
SEARCH DETAIL
...