Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Reprod Biol ; 23(2): 100760, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37023663

ABSTRACT

An interferon-inducible gene, 2'-5'-oligoadenylate synthetase-1 (OAS1), plays an essential role in uterine receptivity and conceptus development by controlling cell growth and differentiation in addition to anti-viral activities. As OAS1 gene has not yet been studied in caprine (cp), so present study was designed with the aim to amplify, sequence, characterize and in-silico analyze the coding sequence of the cpOAS1. Further, expression profile of cpOAS1 was performed by quantitative real-time PCR and western blot in the endometrium of pregnant and cyclic does. An 890 bp fragment of the cpOAS1 was amplified and sequenced. Nucleotide and deduced amino acid sequences revealed 99.6-72.3% identities with that of ruminants and non-ruminants. A constructed phylogenetic tree revealed that Ovis aries and Capra hircus differ from large ungulates. Various post-translational modifications (PTMs), 21 phosphorylation, two sumoylation, eight cysteines and 14 immunogenic sites were found in the cpOAS1. The domain, OAS1_C, is found in the cpOAS1 which carries anti-viral enzymatic activity, cell growth, and differentiation. Among the interacted proteins with cpOAS1, Mx1 and ISG17 well-known proteins are found that have anti-viral activity and play an important role during early pregnancy in ruminants. CpOAS1 protein (42/46 kDa and/or 69/71 kDa) was detected in the endometrium of pregnant and cyclic does. Both cpOAS1 mRNA and protein were expressed maximally (P<0.05) in the endometrium during pregnancy as compared to cyclic does. In conclusion, the cpOAS1 sequence is almost similar in structure and probably in function also to other species along with its higher expression during early pregnancy.


Subject(s)
Endometrium , Goats , Pregnancy , Female , Animals , Phylogeny , Endometrium/metabolism , Amino Acid Sequence , Uterus
2.
J Reprod Immunol ; 143: 103247, 2021 02.
Article in English | MEDLINE | ID: mdl-33260042

ABSTRACT

Myxovirus resistance 1 (Mx1) gene plays an important role in uterine receptivity and conceptus development by creating a strong defense mechanism in the uterine environment. However, the specific role of Mx1 gene is not yet documented in the goat. Therefore, in the present study, full-length coding sequence (CDS) of the Mx1 gene was amplified, sequenced and characterized through various Bioinformatic tools. Temporal expression profile of Mx1 mRNA and protein was also examined by quantitative real-time PCR (qPCR) and western blot, respectively, in the endometrium of cyclic stage (non-pregnant), pregnancy stage I (16-24 days of gestation) and pregnancy stage II (25-40 days of gestation) of caprine (cp). A fragment of the cpMx1 gene, 2144 bp in length, was amplified from complementary DNA (cDNA) with a 1965 bp open reading frame. Coding and deduced amino acid sequences of the cpMx1 were aligned with other species and it exhibited 98.8-81.5 % identities with different species. On phylogenetic analysis, sheep and goat were found belonging to the same clade but differing from large ruminants. The cpMx1 protein possess the conserved signature motif (LPRGTGIVTR) of dynamin superfamily and the tripartite guanosine-5'-triphosphate (GTP) binding motif (GDQSSGKS, DLPG, TKPD) at the N-terminal end, and the leucine zipper motifs at the C-terminal end. Both cpMx1 mRNA and protein were found to be expressed maximally (P < 0.05) in the pregnancy stage I as compared to cyclic stage. It was concluded that the cpMx1 gene shares major structural and probably functional similarities with other species.


Subject(s)
Endometrium/metabolism , Goats/genetics , Myxovirus Resistance Proteins/genetics , Amino Acid Motifs/genetics , Amino Acid Sequence , Animals , Cloning, Molecular , Conserved Sequence/genetics , Female , Goats/metabolism , Myxovirus Resistance Proteins/metabolism , Phylogeny , Pregnancy , Sheep/genetics , Sheep/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...