Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Microsc Res Tech ; 76(7): 751-5, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23630068

ABSTRACT

Transparent conducting Mn-doped ZnO thin films have been prepared by successive ionic layer by adsorption reaction (SILAR) method. The deposition conditions have been optimized based on their structure and on the formation of smoothness, adherence, and stoichiometry. The results of the studies by X-ray diffraction, scanning electron microscope (SEM), reveal the varieties of structural and morphological modifications feasible with SILAR method. The X-ray diffraction patterns confirm that the ZnO:Mn has wurtzite structure. The interesting morphological variations with dopant concentration are observed and discussed. The films' quality is comparable with those grown with physical methods and is suitable for spintronic applications.

2.
J Colloid Interface Sci ; 336(2): 889-97, 2009 Aug 15.
Article in English | MEDLINE | ID: mdl-19473664

ABSTRACT

Single crystalline Eu(3+) doped yttrium oxysulfide (Y(2)O(2)S) nanocrystals, nanosheets, nanobelts, nanotubes, nanorods and nanowires have been successfully prepared via precursors of Y(OH)(3) nanostructures in high yields and purities by a convenient hydrothermal method under mild conditions. Comprehensive structural, morphological and spectroscopical studies have been carried out on the nanometre scale. The as-prepared samples are characterized using X-ray photoelectron spectra (XPS), to investigate the elementary states on the surfaces. A significant shift (approximately 0.22-0.36 eV) in the optical spectra of the Y(2)O(2)S:Eu(3+) system corresponding to the fundamental absorption and charge transfer bands, respectively, with respect to the bulk counterpart. The zero and one-dimensional (1D) nanostructures are good candidates for investigating size-induced opto-electronic properties of functional oxysulfides. In order to identify the origin and nature of the electronic transitions observed in the visible region, the photo-induced impedance measurements have been extended to the zero and 1D nanostructures.

3.
Sci Technol Adv Mater ; 9(3): 035007, 2008 Jul.
Article in English | MEDLINE | ID: mdl-27878004

ABSTRACT

Zinc oxide (ZnO) nano thin films have been deposited by the chemical double-dip technique using aqueous ZnSO4 and NaOH solutions. The ZnO films were characterized in terms of surface morphology by x-ray diffraction, energy-dispersive x-ray analysis (EDX), the use of a scanning electron microscope (SEM) and atomic force microscope (AFM) for surface morphology. The films exhibited a smooth morphology. The chemical states of oxygen and zinc in the ZnO nano thin films were also investigated by x-ray photoelectron spectroscopy (XPS). In the present investigations, highly textured ZnO thin films with a preferential (002)-orientation were prepared on glass substrates. The deposition conditions were optimized to obtain device-quality films for practical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...