Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
J Med Phys ; 49(1): 73-83, 2024.
Article in English | MEDLINE | ID: mdl-38828075

ABSTRACT

Background: Accurate dose measurements are difficult in small fields due to charge particle disequilibrium, partial source occlusion, steep dose gradient, and the finite size of the detector. Aim: The study aims to determine the output factor using various detectors oriented in parallel and perpendicular orientations for three different tertiary collimating systems using 15 MV photon beams. In addition, this study analyzes how the output factor could be affected by different configurations of X and Y jaws above the tertiary collimators. Materials and Methods: Small field output factor measurements were carried out with three detectors for different tertiary collimating systems such as BrainLab stereotactic cones, BrainLab mMLC and Millennium MLC namely. To analyze the effect of jaw position on output factor, measurements have been carried out by positioning the jaws at the edge, 0.25, 0.5, and 1.0 cm away from the tertiary collimated field. Results: The data acquired with 15 MV photon beams show significant differences in output factor obtained with different detectors for all collimating systems. For smaller fields when compared to microDiamond, the SRS diode underestimates the output by up to -1.7% ± 0.8% and -2.1% ± 0.3%, and the pinpoint ion chamber underestimates the output by up to -8.1% ± 1.4% and -11.9% ± 1.9% in their parallel and perpendicular orientation respectively. A large increase in output factor was observed in the small field when the jaw was moved 0.25 cm symmetrically away from the tertiary collimated field. Conclusion: The investigated data on the effect of jaw position inferred that the position of the X and Y jaw highly influences the output factors of the small field. It also confirms that the output factor highly depends on the configuration of X and Y jaw settings, the tertiary collimating system as well as the orientation of the detectors in small fields.

2.
J Med Phys ; 48(3): 281-288, 2023.
Article in English | MEDLINE | ID: mdl-37969152

ABSTRACT

Aim: In this study, a 6MV flattening filter (FF) and 6MV FF Free (FFF) photon beam small-field output factors (OF) were measured with various collimators using different detectors. The corrected OFs were compared with the treatment planning system (TPS) calculated OFs. Materials and Methods: OF measurements were performed with four different types of collimators: Varian Millennium multi-leaf collimator (MLC), Elekta Agility MLC, Apex micro-MLC (mMLC) and a stereotactic cone. Ten detectors (four ionization chambers and six diodes) were used to perform the OF measurements at a depth of 10 cm with a source-to-surface distance of 90 cm. The corrected OF was calculated from the measurements. The corrected OFs were compared with existing TPS-generated OFs. Results: The use of detector-specific output correction factor (OCF) in the PTW diode P detector reduced the OF uncertainty by <4.1% for 1 cm × 1 cm Sclin. The corrected OF was compared with TPS calculated OF; the maximum variation with the IBA CC01 chamber was 3.75%, 3.72%, 1.16%, and 0.90% for 5 mm stereotactic cone, 0.49 cm × 0.49 cm Apex mMLC, 1 cm × 1 cm Agility MLC, and 1 cm × 1 cm Millennium MLC, respectively. Conclusion: The technical report series-483 protocol recommends that detector-specific OCF should be used to calculate the corrected OF from the measured OF. The implementation of OCF in the TPS commissioning will reduce the small-field OF variation by <3% for any type of detector.

3.
Rep Pract Oncol Radiother ; 28(2): 241-254, 2023.
Article in English | MEDLINE | ID: mdl-37456703

ABSTRACT

Background: Beam matching is widely used to ensure that linear accelerators used in radiotherapy have equal dosimetry characteristics. Small-field output factors (OF) were measured using different detectors infour beam-matched linear accelerators and the measured OFs were compared with existing treatment planning system (TPS) Monte Carlo algorithm calculated OFs. Materials and methods: Three Elekta Versa HDTM and one Elekta InfinityTMlinear accelerators with photon energies of 6 MV flattening filter (FF), 10 MVFF, 6 MV flattening filter free (FFF) and 10 MVFFF were used in this study. All the Linac'swere beam-matched, Dosimetry beam data were ± 1% compare with Reference Linac. Ten different type of detectors (four ionizationchambers and six diode detectors) were used for small-field OF measurements. The OFs were measured for field sizes of 1 × 1 to 10 × 10 cm2, and normalized to 10 × 10 cm2 field size. The uncorrected and corrected OFs were calculated from these measurements. The corrected OF was compare with existing treatment planning system (TPS) Monte Carlo algorithm calculated OFs. Results: The small-field corrected and Uncorrected OF variations among the linear accelerators was within 1% for all energies and detectors. An increase in field size led to a reduction in the difference between OFs among the detectors, which was the case for all energies. The RSD values decreased with increasing field size. The TRS 483 provided Detector-specificoutput-correction factor (OCF) reduced uncertainty in small-field measurements. Conclusion: It is necessary to implement the OF-correction of small fields in a TPS. Special care must be taken to incorporate the corrected small-field OF in a TPS.

4.
Asian Pac J Cancer Prev ; 20(8): 2463-2470, 2019 08 01.
Article in English | MEDLINE | ID: mdl-31450921

ABSTRACT

Objective: The present study aims to evaluate the accelerated intensity modulated radiotherapy (IMRT) of head and neck (HandN) treatments using physical indices and radiobiological models with its clinical correlation using histogram analysis in radiation therapy (HART). The radiobiological evaluation in terms of tumor control probability (TCP) and normal tissue complication probability (NTCP) indices were compared with acute toxicity. Materials and Methods: A total of twenty patients with stage III and IV of HandN cases treated with accelerated IMRT using 6MV photons were chosen for the study. Using HART software, physical indices of the IMRT plans have been defined by universal plan indices (UPI's) which summarize the various recognized plan indices. The overall quality factor (QF) of a plan was determined by a linear combination of all indices in UPI set. The clinical outcomes in terms of the acute toxicity like dysphagia and xerostomia were compared with NTCP values of the OAR calculated from HART software. Results: The mean QF and the mean Poisson TCP index was found to be 0.993±0.02 and 0.86 ±0.02 respectively. The mean JT Lyman NTCP index for bilateral parotid, constrictors, and larynx were found to be 0.23±0.14, 0.30±0.17 and 0.22±0.15 respectively. The acute toxicities in terms of severity of xerostomia and dysphagia have shown a moderate correlation with NTCP values of bilateral parotids, constrictors, and larynx, respectively. Conclusion: The mean QF based on UPI was found to be close to unity, which correlates with being a better IMRT plan. The present study suggested the existence of a moderate correlation between the calculated NTCP values and their respective severities of the organ at risk (OAR's). Accelerated IMRT with chemotherapy is a clinically feasible option in the treatment of locally advanced head and neck squamous cell carcinoma (HNSCC) with encouraging initial tumor response and acceptable acute toxicities.


Subject(s)
Chemoradiotherapy/methods , Deglutition Disorders/epidemiology , Head and Neck Neoplasms/therapy , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Squamous Cell Carcinoma of Head and Neck/therapy , Xerostomia/epidemiology , Adult , Aged , Female , Follow-Up Studies , Head and Neck Neoplasms/pathology , Humans , Incidence , India/epidemiology , Male , Middle Aged , Prognosis , Radiotherapy Dosage , Squamous Cell Carcinoma of Head and Neck/pathology
5.
Rep Pract Oncol Radiother ; 17(3): 157-62, 2012.
Article in English | MEDLINE | ID: mdl-24377018

ABSTRACT

AIM: To compare the measured and calculated individual and composite field planar dose distribution of Intensity Modulated Radiotherapy plans. MATERIALS AND METHODS: The measurements were performed in Clinac DHX linear accelerator with 6 MV photons using Matrixx device and a solid water phantom. The 20 brain tumor patients were selected for this study. The IMRT plan was carried out for all the patients using Eclipse treatment planning system. The verification plan was produced for every original plan using CT scan of Matrixx embedded in the phantom. Every verification field was measured by the Matrixx. The TPS calculated and measured dose distributions were compared for individual and composite fields. RESULTS AND DISCUSSION: The percentage of gamma pixel match for the dose distribution patterns were evaluated using gamma histogram. The gamma pixel match was 95-98% for 41 fields (39%) and 98% for 59 fields (61%) with individual fields. The percentage of gamma pixel match was 95-98% for 5 patients and 98% for other 12 patients with composite fields. Three patients showed a gamma pixel match of less than 95%. The comparison of percentage gamma pixel match for individual and composite fields showed more than 2.5% variation for 6 patients, more than 1% variation for 4 patients, while the remaining 10 patients showed less than 1% variation. CONCLUSION: The individual and composite field measurements showed good agreement with TPS calculated dose distribution for the studied patients. The measurement and data analysis for individual fields is a time consuming process, the composite field analysis may be sufficient enough for smaller field dose distribution analysis with array detectors.

6.
J Appl Clin Med Phys ; 12(2): 3367, 2011 Apr 04.
Article in English | MEDLINE | ID: mdl-21587184

ABSTRACT

For intensity-modulated radiation therapy, evaluation of the measured dose against the treatment planning calculated dose is essential in the context of patient-specific quality assurance. The complexity of volumetric arc radiotherapy delivery attributed to its dynamic and synchronization nature require new methods and potentially new tools for the quality assurance of such techniques. In the present study, we evaluated and compared the dosimetric performance of EDR2 film and three other commercially available quality assurance devices: IBA I'MatriXX array, PTW Seven29 array and the Delta4 array. The evaluation of these dosimetric systems was performed for RapidArc and IMRT deliveries using a Varian NovalisTX linear accelerator. The plans were generated using the Varian Eclipse treatment planning system. Our results showed that all four QA techniques yield equivalent results. All patient QAs passed our institutional clinical criteria of gamma index based on a 3% dose difference and 3 mm distance to agreement. In addition, the Bland-Altman analysis was performed which showed that all the calculated gamma values of all three QA devices were within 5% from those of the film. The results showed that the four QA systems used in this patient-specific IMRT QA analysis are equivalent. We concluded that the dosimetric systems under investigation can be used interchangeably for routine patient specific QA.


Subject(s)
Particle Accelerators/instrumentation , Quality Assurance, Health Care , Radiotherapy, Intensity-Modulated/instrumentation , Calibration , Equipment Design , Female , Humans , Male , Neoplasms/radiotherapy , Quality Control , Radiometry/instrumentation , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/instrumentation , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Intensity-Modulated/methods , Radiotherapy, Intensity-Modulated/standards
7.
Australas Phys Eng Sci Med ; 34(1): 55-61, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21331465

ABSTRACT

In order to verify intensity modulated radiotherapy quality assurance procedure and to establish the practical base line commissioning, American Association of Physicists in Medicine-Task Group 119 test suite DICOM-RT images and structure were downloaded for planning and dosimetric comparison. The square slab phantom of water equivalent plastic was used for the measurement. This phantom can permit point dose measurement with ionization chamber by placing the chamber at 7.5 cm depth in the slab phantom. The planar dose measurements were carried out by positioning the Matrixx detector at 10 cm depth. The planning and measurements were performed as per AAPM TG119 guidelines. The test suite includes AP:PA field, band test, multitarget, prostate, head and neck and C-shape. The ion chamber measurements were within 3% of the planned dose for target and avoidance structure region. The ion chamber measurement results are in good agreement with the TG119 recommendation of ±3% for all the test suites. The planar dose measurements were performed with Matrixx for individual fields at the planned gantry angle. The results show that the pass criteria for γ ≤ 1 were between 93 to 97% for all the test cases. Our results are in good agreement with the TG119 recommendation. The present study aimed to compare the measured dose with the planned dose using computer planning system. The test suites were used to assess the planning and delivery systems so as to provide the basis for IMRT commissioning and QA.


Subject(s)
Practice Guidelines as Topic , Radiometry/standards , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Conformal/standards , Therapy, Computer-Assisted/standards , Humans , Radiotherapy Dosage , Reproducibility of Results , Sensitivity and Specificity
8.
J Appl Clin Med Phys ; 11(2): 3076, 2010 Apr 19.
Article in English | MEDLINE | ID: mdl-20592695

ABSTRACT

Intensity-modulated radiotherapy treatment demands stringent quality assurance and accurate dose determination for delivery of highly conformal dose to the patients. Generally 3D dose distributions obtained from a treatment planning system have to be verified by dosimetric methods. Mainly, a comparison of two-dimensional calculated and measured data in several coplanar planes is performed. In principle, there are many possibilities to measure two-dimensional dose distributions such as films, flat-panel electronic portal imaging devices (EPID), ion chambers and ionization chamber arrays, and radiographic and radiochromic films. The flat-panel EPIDs show a good resolution and offer a possibility for real-time measurements: however to convert the signal into dose, a separate commercial algorithm is required. The 2D ion chamber array system offers the real-time measurements. In this study, dosimetric characteristics of 2D ion chamber array matrix were analyzed for verification of radiotherapy treatments. The dose linearity and dose rate effect of the I'matriXX device was studied using 6 MV, 18 MV photons and 12 MeV electrons. The output factor was estimated using I'matriXX device and compared with ion chamber measurements. The ion chamber array system was found to be linear in the dose range of 2-500 cGy and the response of the detector was found to be independent of dose rate between 100 MU/min to 600 MU/min. The estimated relative output factor with I'matriXX was found to match very well with the ion chamber measurements. To check the final dose delivered during IMRT planning, dose distribution patterns such as field-in-field, pyramidal, and chair tests were generated with the treatment planning system (TPS) and the same was executed in the accelerator and measured with the I'matriXX device. The dose distribution pattern measured by the matrix device for field-in-field, pyramidal, and chair test were found to be in good agreement with the calculated dose distribution by TPS both for 6 and 18 MV photons (gamma < or = 1: 96%, criteria 3%, 3 mm). Two 7-field IMRT plans (one prostate, one head and neck) dose distribution patterns were also measured with I'matriXX device and compared with film dosimetry. The measurements and evaluation proves that I'matriXX can be used for quantifying absolute dose. Moreover, using I'matriXX as absolute dosimeter in IMRT field verification, avoids the time-consuming procedure of making ionometric measurement for absolute dose estimation and film for dose distribution verification. The I'matriXX can also used for routine quality assurance checks like flatness, symmetry, field width, and penumbra of the linear accelerator beam.


Subject(s)
Neoplasms/radiotherapy , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/standards , Radiotherapy, Intensity-Modulated/standards , Algorithms , Humans , Ions , Particle Accelerators , Photons , Radiotherapy Dosage
9.
J Appl Clin Med Phys ; 12(1): 3373, 2010 Nov 16.
Article in English | MEDLINE | ID: mdl-21330988

ABSTRACT

The complexity of VMAT delivery requires new methods and potentially new tools for the commissioning of these systems. It appears that great consideration is needed for quality assurance (QA) of these treatments since there are limited devices that are dedicated to the QA of rotational delivery. In this present study, we have evaluated the consistency and reproducibility of one prostate and one lung VMAT plans for 31 consecutive days using three different approaches: 1) MLC DynaLog files, 2) in vivo measurements using the multiwire ionization chamber DAVID, and 3) using PTWseven29 2D ARRAY with the OCTAVIUS phantom at our Varian Clinac linear accelerator. Overall, the three methods of testing the reproducibility and consistency of the VMAT delivery were in agreement with each other. All methods showed minimal daily deviations that contributed to clinically insignificant dose variations from day to day. Based on our results, we conclude that the VMAT delivery using a Varian 2100CD linear accelerator equipped with 120 MLC is highly reproducible.


Subject(s)
Lung Neoplasms/radiotherapy , Prostatic Neoplasms/radiotherapy , Radiotherapy Planning, Computer-Assisted/methods , Humans , Male , Phantoms, Imaging , Quality Control , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/instrumentation , Reproducibility of Results , Sensitivity and Specificity , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...