Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 17: 1210544, 2023.
Article in English | MEDLINE | ID: mdl-37529233

ABSTRACT

Peripheral nerve injury can lead to chronic pain, paralysis, and loss of sensation, severely affecting quality of life. Spinal cord stimulation has been used in the clinic to provide pain relief arising from peripheral nerve injuries, however, its ability to restore function after peripheral nerve injury have not been explored. Neuromodulation of the spinal cord through transcutaneous spinal cord stimulation (tSCS), when paired with activity-based training, has shown promising results towards restoring volitional limb control in people with spinal cord injury. We show, for the first time, the effectiveness of targeted tSCS in restoring strength (407% increase from 1.79 ± 1.24 N to up to 7.3 ± 0.93 N) and significantly increasing hand dexterity in an individual with paralysis due to a peripheral nerve injury (PNI). Furthermore, this is the first study to document a persisting 3-point improvement during clinical assessment of tactile sensation in peripheral injury after receiving 6 weeks of tSCS. Lastly, the motor and sensory gains persisted for several months after stimulation was received, suggesting tSCS may lead to long-lasting benefits, even in PNI. Non-invasive spinal cord stimulation shows tremendous promise as a safe and effective therapeutic approach with broad applications in functional recovery after debilitating injuries.

2.
Front Neurosci ; 17: 1210328, 2023.
Article in English | MEDLINE | ID: mdl-37483349

ABSTRACT

Long-term recovery of limb function is a significant unmet need in people with paralysis. Neuromodulation of the spinal cord through epidural stimulation, when paired with intense activity-based training, has shown promising results toward restoring volitional limb control in people with spinal cord injury. Non-invasive neuromodulation of the cervical spinal cord using transcutaneous spinal cord stimulation (tSCS) has shown similar improvements in upper-limb motor control rehabilitation. However, the motor and sensory rehabilitative effects of activating specific cervical spinal segments using tSCS have largely remained unexplored. We show in two individuals with motor-complete SCI that targeted stimulation of the cervical spinal cord resulted in up to a 1,136% increase in exerted force, with weekly activity-based training. Furthermore, this is the first study to document up to a 2-point improvement in clinical assessment of tactile sensation in SCI after receiving tSCS. Lastly, participant gains persisted after a one-month period void of stimulation, suggesting that targeted tSCS may lead to persistent recovery of motor and sensory function.

3.
Sci Rep ; 12(1): 17002, 2022 10 11.
Article in English | MEDLINE | ID: mdl-36220864

ABSTRACT

Modern myoelectric prosthetic hands have multiple independently controllable degrees of freedom, but require constant visual attention to use effectively. Somatosensory feedback provides information not available through vision alone and is essential for fine motor control of our limbs. Similarly, stimulation of the nervous system can potentially provide artificial somatosensory feedback to reduce the reliance on visual cues to efficiently operate prosthetic devices. We have shown previously that epidural stimulation of the lateral cervical spinal cord can evoke tactile sensations perceived as emanating from the missing arm and hand in people with upper-limb amputation. In this case study, two subjects with upper-limb amputation used this somatotopically-matched tactile feedback to discriminate object size and compliance while controlling a prosthetic hand. With less than 30 min of practice each day, both subjects were able to use artificial somatosensory feedback to perform a subset of the discrimination tasks at a success level well above chance. Subject 1 was consistently more adept at determining object size (74% accuracy; chance: 33%) while Subject 2 achieved a higher accuracy level in determining object compliance (60% accuracy; chance 33%). In each subject, discrimination of the other object property was only slightly above or at chance level suggesting that the task design and stimulation encoding scheme are important determinants of which object property could be reliably identified. Our observations suggest that changes in the intensity of artificial somatosensory feedback provided via spinal cord stimulation can be readily used to infer information about object properties with minimal training.


Subject(s)
Amputees , Artificial Limbs , Cervical Cord , Feedback, Sensory/physiology , Hand/physiology , Humans , Touch/physiology , Upper Extremity
4.
Front Neurol ; 12: 739693, 2021.
Article in English | MEDLINE | ID: mdl-34630308

ABSTRACT

Devices interfacing with the brain through implantation in cortical or subcortical structures have great potential for restoration and rehabilitation in patients with sensory or motor dysfunction. Typical implantation surgeries are planned based on maps of brain activity generated from intact function. However, mapping brain activity for planning implantation surgeries is challenging in the target population due to abnormal residual function and, increasingly often, existing MRI-incompatible implanted hardware. Here, we present methods and results for mapping impaired somatosensory and motor function in an individual with paralysis and an existing brain-computer interface (BCI) device. Magnetoencephalography (MEG) was used to directly map the neural activity evoked during transcutaneous electrical stimulation and attempted movement of the impaired hand. Evoked fields were found to align with the expected anatomy and somatotopic organization. This approach may be valuable for guiding implants in other applications, such as cortical stimulation for pain and to improve implant targeting to help reduce the craniotomy size.

5.
Front Neurosci ; 15: 699631, 2021.
Article in English | MEDLINE | ID: mdl-34483823

ABSTRACT

Millions of people worldwide suffer motor or sensory impairment due to stroke, spinal cord injury, multiple sclerosis, traumatic brain injury, diabetes, and motor neuron diseases such as ALS (amyotrophic lateral sclerosis). A brain-computer interface (BCI), which links the brain directly to a computer, offers a new way to study the brain and potentially restore impairments in patients living with these debilitating conditions. One of the challenges currently facing BCI technology, however, is to minimize surgical risk while maintaining efficacy. Minimally invasive techniques, such as stereoelectroencephalography (SEEG) have become more widely used in clinical applications in epilepsy patients since they can lead to fewer complications. SEEG depth electrodes also give access to sulcal and white matter areas of the brain but have not been widely studied in brain-computer interfaces. Here we show the first demonstration of decoding sulcal and subcortical activity related to both movement and tactile sensation in the human hand. Furthermore, we have compared decoding performance in SEEG-based depth recordings versus those obtained with electrocorticography electrodes (ECoG) placed on gyri. Initial poor decoding performance and the observation that most neural modulation patterns varied in amplitude trial-to-trial and were transient (significantly shorter than the sustained finger movements studied), led to the development of a feature selection method based on a repeatability metric using temporal correlation. An algorithm based on temporal correlation was developed to isolate features that consistently repeated (required for accurate decoding) and possessed information content related to movement or touch-related stimuli. We subsequently used these features, along with deep learning methods, to automatically classify various motor and sensory events for individual fingers with high accuracy. Repeating features were found in sulcal, gyral, and white matter areas and were predominantly phasic or phasic-tonic across a wide frequency range for both HD (high density) ECoG and SEEG recordings. These findings motivated the use of long short-term memory (LSTM) recurrent neural networks (RNNs) which are well-suited to handling transient input features. Combining temporal correlation-based feature selection with LSTM yielded decoding accuracies of up to 92.04 ± 1.51% for hand movements, up to 91.69 ± 0.49% for individual finger movements, and up to 83.49 ± 0.72% for focal tactile stimuli to individual finger pads while using a relatively small number of SEEG electrodes. These findings may lead to a new class of minimally invasive brain-computer interface systems in the future, increasing its applicability to a wide variety of conditions.

6.
Bioelectron Med ; 7(1): 14, 2021 Sep 22.
Article in English | MEDLINE | ID: mdl-34548098

ABSTRACT

Almost 100 years ago experiments involving electrically stimulating and recording from the brain and the body launched new discoveries and debates on how electricity, movement, and thoughts are related. Decades later the development of brain-computer interface technology began, which now targets a wide range of applications. Potential uses include augmentative communication for locked-in patients and restoring sensorimotor function in those who are battling disease or have suffered traumatic injury. Technical and surgical challenges still surround the development of brain-computer technology, however, before it can be widely deployed. In this review we explore these challenges, historical perspectives, and the remarkable achievements of clinical study participants who have bravely forged new paths for future beneficiaries.

7.
Brain Stimul ; 14(5): 1184-1196, 2021.
Article in English | MEDLINE | ID: mdl-34358704

ABSTRACT

BACKGROUND: Paralysis and neuropathy, affecting millions of people worldwide, can be accompanied by significant loss of somatosensation. With tactile sensation being central to achieving dexterous movement, brain-computer interface (BCI) researchers have used intracortical and cortical surface electrical stimulation to restore somatotopically-relevant sensation to the hand. However, these approaches are restricted to stimulating the gyral areas of the brain. Since representation of distal regions of the hand extends into the sulcal regions of human primary somatosensory cortex (S1), it has been challenging to evoke sensory percepts localized to the fingertips. OBJECTIVE/HYPOTHESIS: Targeted stimulation of sulcal regions of S1, using stereoelectroencephalography (SEEG) depth electrodes, can evoke focal sensory percepts in the fingertips. METHODS: Two participants with intractable epilepsy received cortical stimulation both at the gyri via high-density electrocorticography (HD-ECoG) grids and in the sulci via SEEG depth electrode leads. We characterized the evoked sensory percepts localized to the hand. RESULTS: We show that highly focal percepts can be evoked in the fingertips of the hand through sulcal stimulation. fMRI, myelin content, and cortical thickness maps from the Human Connectome Project elucidated specific cortical areas and sub-regions within S1 that evoked these focal percepts. Within-participant comparisons showed that percepts evoked by sulcal stimulation via SEEG electrodes were significantly more focal (80% less area; p = 0.02) and localized to the fingertips more often, than by gyral stimulation via HD-ECoG electrodes. Finally, sulcal locations with consistent modulation of high-frequency neural activity during mechanical tactile stimulation of the fingertips showed the same somatotopic correspondence as cortical stimulation. CONCLUSIONS: Our findings indicate minimally invasive sulcal stimulation via SEEG electrodes could be a clinically viable approach to restoring sensation.


Subject(s)
Hand , Somatosensory Cortex , Electric Stimulation , Electrocorticography , Electrodes, Implanted , Humans , Touch
9.
Elife ; 92020 07 21.
Article in English | MEDLINE | ID: mdl-32691733

ABSTRACT

Restoring somatosensory feedback to people with limb amputations is crucial to improve prosthetic control. Multiple studies have demonstrated that peripheral nerve stimulation and targeted reinnervation can provide somatotopically relevant sensory feedback. While effective, the surgical procedures required for these techniques remain a major barrier to translatability. Here, we demonstrate in four people with upper-limb amputation that epidural spinal cord stimulation (SCS), a common clinical technique to treat pain, evoked somatosensory percepts that were perceived as emanating from the missing arm and hand. Over up to 29 days, stimulation evoked sensory percepts in consistent locations in the missing hand regardless of time since amputation or level of amputation. Evoked sensations were occasionally described as naturalistic (e.g. touch or pressure), but were often paresthesias. Increasing stimulus amplitude increased the perceived intensity linearly, without increasing area of the sensations. These results demonstrate the potential of SCS as a tool to restore somatosensation after amputations.


Even some of the most advanced prosthetic arms lack an important feature: the ability to relay information about touch or pressure to the wearer. In fact, many people prefer to use simpler prostheses whose cables and harnesses pass on information about tension. However, recent studies suggest that electrical stimulation might give prosthesis users more sensation and better control. After an amputation, the nerves that used to deliver sensory information from the hand still exist above the injury. Stimulating these nerves can help to recreate sensations in the missing limb and improve the control of the prosthesis. Still, this stimulation requires complicated surgical interventions to implant electrodes in or around the nerves. Spinal cord stimulation ­ a technique where a small electrical device is inserted near the spinal cord to stimulate nerves ­ may be an easier alternative. This approach only requires a simple outpatient procedure, and it is routinely used to treat chronic pain conditions. Now, Chandrasekaran, Nanivadekar et al. show that spinal cord stimulation can produce the feeling of sensations in a person's missing hand or arm. In the experiments, four people who had an arm amputation underwent spinal cord stimulation over 29 days. During the stimulation, the participants reported feeling electrical buzzing, vibration, or pressure in their missing limb. Changing the strength of the electric signals delivered to the spinal cord altered the intensity of these sensations. The experiments are a step toward developing better prosthetics that restore some sensation. Further studies are now needed to determine whether spinal cord stimulation would allow people to perform sensory tasks with a prosthetic, for example handling an object that they cannot see.


Subject(s)
Amputation, Surgical/rehabilitation , Artificial Limbs , Electric Stimulation Therapy/methods , Electrodes, Implanted , Feedback, Sensory/physiology , Spinal Cord/physiology , Touch Perception/physiology , Adult , Aged , Female , Humans , Male , Treatment Outcome , United States
10.
Muscle Nerve ; 59(2): 154-167, 2019 02.
Article in English | MEDLINE | ID: mdl-30152101

ABSTRACT

Post-amputation phantom limb pain (PLP) is a widespread phenomenon that can have physical, psychological, and functional impacts on amputees who experience the condition. The varying presentations and mechanisms of PLP make it difficult to effectively provide long-term pain relief. Multiple neuromodulatory approaches to treating PLP have focused on electrical stimulation of the peripheral nervous system, with varying degrees of success. More recently, research has been done to study the effects of neuroprosthetic approaches on PLP. Neuroprosthetics combine the use of a functional prosthetic with stimulation to the peripheral nerves in the residual limb. Although many of the neuroprosthetic studies focus on improving function, several have shown preliminary evidence for the reduction of severity of PLP. In this review we provide an overview of the current understanding of the neurological mechanisms that initiate and sustain PLP, as well as the neuromodulatory and neuroprosthetic approaches under development for treatment of the condition. Muscle Nerve 59:154-167, 2019.


Subject(s)
Artificial Limbs , Peripheral Nerves/physiology , Phantom Limb/therapy , Transcutaneous Electric Nerve Stimulation/methods , Humans
11.
J Neurosci ; 35(50): 16450-62, 2015 Dec 16.
Article in English | MEDLINE | ID: mdl-26674870

ABSTRACT

Neocortical circuits can be altered by sensory and motor experience, with experimental evidence supporting both anatomical and electrophysiological changes in synaptic properties. Previous studies have focused on changes in specific neurons or pathways-for example, the thalamocortical circuitry, layer 4-3 (L4-L3) synapses, or in the apical dendrites of L5 neurons- but a broad-scale analysis of experience-induced changes across the cortical column has been lacking. Without this comprehensive approach, a full understanding of how cortical circuits adapt during learning or altered sensory input will be impossible. Here we adapt an electron microscopy technique that selectively labels synapses, in combination with a machine-learning algorithm for semiautomated synapse detection, to perform an unbiased analysis of developmental and experience-dependent changes in synaptic properties across an entire cortical column in mice. Synapse density and length were compared across development and during whisker-evoked plasticity. Between postnatal days 14 and 18, synapse density significantly increases most in superficial layers, and synapse length increases in L3 and L5B. Removal of all but a single whisker row for 24 h led to an apparent increase in synapse density in L2 and a decrease in L6, and a significant increase in length in L3. Targeted electrophysiological analysis of changes in miniature EPSC and IPSC properties in L2 pyramidal neurons showed that mEPSC frequency nearly doubled in the whisker-spared column, a difference that was highly significant. Together, this analysis shows that data-intensive analysis of column-wide changes in synapse properties can generate specific and testable hypotheses about experience-dependent changes in cortical organization. SIGNIFICANCE STATEMENT: Development and sensory experience can change synapse properties in the neocortex. Here we use a semiautomated analysis of electron microscopy images for an unbiased, column-wide analysis of synapse changes. This analysis reveals new loci for synaptic change that can be verified by targeted electrophysiological investigation. This method can be used as a platform for generating new hypotheses about synaptic changes across different brain areas and experimental conditions.


Subject(s)
Microscopy, Electron/methods , Neocortex/pathology , Synapses/pathology , Adaptation, Physiological , Algorithms , Animals , Excitatory Postsynaptic Potentials , Female , Individuality , Learning , Machine Learning , Male , Mice , Mice, Inbred C57BL , Neocortex/growth & development , Nerve Net/pathology , Neuronal Plasticity , Patch-Clamp Techniques , Pyramidal Cells/pathology , Vibrissae/innervation
SELECTION OF CITATIONS
SEARCH DETAIL
...