Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 33(51): e2103098, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34599768

ABSTRACT

Layered 2D (PbI2 )1- x (BiI3 )x materials exhibit a nonlinear dependence in structural and charge transport properties unanticipated from the combination of PbI2 and BiI3 . Within (PbI2 )1- x (BiI3 )x crystals, phase integration yields deceptive structural features, while phase boundary separation leads to new conductance switching behavior observed as large peaks in current during current-voltage (I-V) measurements (±100 V). Temperature- and time-dependent electrical measurements demonstrate that the behavior is attributed to ionic transport perpendicular to the layers. High-resolution transmission electron microscopy reveals that the structure of (PbI2 )1- x (BiI3 )x is a "brick wall" consisting of two phases, Pb-rich and Bi-rich. These brick-like features are 10s nm a side and it is posited that iodide ion transport at the interfaces of these regions is responsible for the conductance switching action.

2.
Inorg Chem ; 60(6): 3502-3513, 2021 Mar 15.
Article in English | MEDLINE | ID: mdl-33635075

ABSTRACT

We report a reactive flux technique using the common reagent P2S5 and metal precursors developed to circumvent the synthetic bottleneck for producing high-quality single- and mixed-metal two-dimensional (2D) thiophosphate materials. For the monometallic compound, M2P2S6 (M = Ni, Fe, and Mn), phase-pure materials were quickly synthesized and annealed at 650 °C for 1 h. Crystals of dimensions of several millimeters were grown for some of the metal thiophosphates using optimized heating profiles. The homogeneity of the bimetallic thiophosphates MM'P2S6 (M, M' = Ni, Fe, and Mn) was elucidated using energy-dispersive X-ray spectroscopy and Rietveld refinement. The quality of the selected materials was characterized by transmission electron microscopy and atomic force microscopy measurements. We report two novel bimetallic thiophosphates, MnCoP2S6 and FeCoP2S6. The Ni2P2S6 and MnNiP2S6 flux reactions were monitored in situ using variable-temperature powder X-ray diffraction to understand the formation reaction pathways. The phases were directly formed in a single step at approximately 375 °C. The work functions of the semiconducting materials were determined and ranged from 5.28 to 5.72 eV.

3.
Rev Sci Instrum ; 91(2): 023705, 2020 Feb 01.
Article in English | MEDLINE | ID: mdl-32113447

ABSTRACT

An inexpensive yet versatile transducer controller for non-contact scanning probe microscopy (SPM) based on a PIC32 microcontroller from Microchip Technology, Inc is described. In addition to feedback control using the amplitude or phase of the signal from the non-contact transducer, the controller includes a phase-locked loop for frequency-shift feedback, as well as fixed-amplitude, quality factor (Q) control, and self-excitation modes. Apart from the input amplifiers, output buffers, and the Q-control circuit, all other functions of the controller are instantiated in software on the microchip, enabling rapid changes in operating parameters if needed. The controller communicates with a host personal computer via a simple serial connection. The controller has been tested with a quartz tuning-fork transducer but can be used with any oscillating non-contact transducer.

SELECTION OF CITATIONS
SEARCH DETAIL
...