Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 21(8): 5391-401, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24371007

ABSTRACT

Biofilters are widely adopted in Australia for stormwater treatment, but the reported removal of common faecal indicators (such as Escherichia coli (E. coli)) varies from net removal to net leaching. Currently, the underlying mechanisms that govern the faecal microbial removal in the biofilters are poorly understood. Therefore, it is important to study retention and subsequent survival of faecal microorganisms in the biofilters under different biofilter designs and operational characteristics. The current study investigates how E. coli survival is influenced by temperature, moisture content, sunlight exposure and presence of other microorganisms in filter media and top surface sediment. Soil samples were taken from two different biofilters to investigate E. coli survival under controlled laboratory conditions. Results revealed that the presence of other microorganisms and temperature are vital stressors which govern the survival of E. coli captured either in the top surface sediment or filter media, while sunlight exposure and moisture content are important for the survival of E. coli captured in the top surface sediment compared to that of the filter media. Moreover, increased survival was found in the filter media compared to the top sediment, and sand filter media was found be more hostile than loamy sand filter media towards E. coli survival. Results also suggest that the contribution from the tested environmental stressors on E. coli survival in biofilters will be greatly affected by the seasonality and may vary from one site to another.


Subject(s)
Escherichia coli/growth & development , Filtration/instrumentation , Waste Disposal, Fluid/methods , Wastewater/microbiology , Australia , Drainage, Sanitary , Filtration/methods , Silicon Dioxide , Soil
2.
Water Sci Technol ; 67(11): 2467-75, 2013.
Article in English | MEDLINE | ID: mdl-23752378

ABSTRACT

Stormwater biofilters are not currently optimised for pathogen removal since the behaviour of these pollutants within the stormwater biofilters is poorly understood. Modelling is a common way of optimising these systems, which also provides a better understanding of the major processes that govern the pathogen removal. This paper provides an overview of a laboratory-scale study that investigated how different design and operational conditions impact pathogen removal in the stormwater biofilters. These data were then used to develop a modelling tool that can be used to optimise the design and operation of the stormwater biofilters. The model uses continuous simulations where adsorption and desorption were dominant during wet weather periods and first order die-off kinetics were significant in dry periods between the wet weather events. Relatively high Nash Sutcliffe Efficiencies (>0.5) indicate that the calibrated model is in good agreement with observed data and the optimised model parameters were comparable with values reported in the literature. The model's sensitivity is highest towards the adsorption process parameter followed by the die-off and desorption rate parameters, which implies that adsorption is the governing process of the model. Vegetation is found to have an impact on the wet weather processes since the adsorption and desorption parameters vary significantly with the different plant configurations. The model is yet to be tested against field data and needs to be improved to represent the effect of some other biofilter design configurations, such as the inclusion of the submerged zone.


Subject(s)
Escherichia coli/isolation & purification , Filtration/methods , Models, Theoretical , Water Pollutants/isolation & purification , Algorithms , Carex Plant/chemistry , Liliaceae/chemistry , Rain , Water Purification
3.
Water Sci Technol ; 66(5): 1132-8, 2012.
Article in English | MEDLINE | ID: mdl-22797244

ABSTRACT

Biofilters are common, low energy technologies used for the treatment of urban stormwater. While they have shown promising results for the removal of stormwater microorganisms, certain factors affect their performance. Hence, this study investigated the effects of particle-microbial interaction, inflow concentration, antecedent microbial levels and plant species on microbial removal capacity. A biofilter column study was set up to evaluate removal performance and a sequential filtration procedure was used to estimate microbial partitioning. The columns were dosed with different concentrations of free phase Escherichia coli only and E. coli mixed with stormwater sediment. Results indicate that the microbial removal is significantly affected by inflow concentration and antecedent microbial levels. Leaching was only observed when a relatively low inflow concentration event occurred within a short period after a very high inflow concentration event. Finally, Lomandra longifolia showed better removal compared with Carex appressa.


Subject(s)
Escherichia coli , Filtration/instrumentation , Filtration/methods , Water Microbiology , Biodegradation, Environmental , Carex Plant/metabolism , Liliaceae/metabolism , Water Pollutants , Water Purification
SELECTION OF CITATIONS
SEARCH DETAIL
...