Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
Add more filters










Publication year range
1.
RSC Adv ; 14(12): 8454, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38487522

ABSTRACT

[This corrects the article DOI: 10.1039/C9RA09476H.].

2.
Gels ; 9(12)2023 Dec 09.
Article in English | MEDLINE | ID: mdl-38131953

ABSTRACT

Aerogels are three-dimensional solid networks with incredibly low densities, high porosity, and large specific surface areas. These aerogels have both nanoscale and macroscopic interior structures. Combined with graphene, the aerogels show improved mechanical strength, electrical conductivity, surface area, and adsorption capacity, making them ideal for various biomedical applications. The graphene aerogel has a high drug-loading capacity due to its large surface area, and the porous structure enables controlled drug release over time. The presence of graphene makes it a suitable material for wound dressings, blood coagulation, and bilirubin adsorption. Additionally, graphene's conductivity can help in the electrical stimulation of cells for improved tissue regeneration, and it is also appropriate for biosensors. In this review, we discuss the preparation and advantages of graphene-based aerogels in wound dressings, drug delivery systems, bone regeneration, and biosensors.

3.
High Alt Med Biol ; 24(2): 85-93, 2023 06.
Article in English | MEDLINE | ID: mdl-36989508

ABSTRACT

Apte, Chandrashekhar V. Barometric pressure at high altitude: revisiting West's prediction equation, and more. High Alt Med Biol. 24:85-93, 2023. Introduction: Since an earlier prediction equation to calculate barometric pressure at a given altitude had been tested against limited barometric pressure observations, its accuracy needed to be re-validated against additional pressure observations. Methods: Five-year (2016-2020) barometric pressure and altitude data were downloaded from an open-source website for 25 select locations. The calculated predicted pressure was compared with mean 5-year, mean monthly, and mean daily pressures. Percent prediction error and root mean square errors were used to assess accuracy of the prediction equation. Results: The original prediction equation was accurate to within 1% for locations only within 22° latitude. It was increasingly inaccurate at higher latitudes and also for means based on shorter time spans (e.g., mean monthly and daily pressures). A new prediction equation was proposed by developing a model using downloaded data. The new equation resulted in more accurate predictions for all latitudes and all time spans. The new equation also performed well when tested at seven new locations. Conclusions: Ideally, medical professionals at high altitude should rely on actual barometric pressure observations to assess hypoxic risk. In the absence of actual measurements, the suggested new prediction equation may be used to estimate, with some limitations, the ambient barometric pressure at latitudes below 47° and altitudes up to about 4,700 m.


Subject(s)
Altitude , Atmospheric Pressure , Humans , Hypoxia
4.
RSC Adv ; 12(4): 2083-2093, 2022 Jan 12.
Article in English | MEDLINE | ID: mdl-35425268

ABSTRACT

A simple method for the synthesis of indeno-[1,2-b]-quinoline-9,11-(6H,10H)-dione derivatives and 7,7-dimethyl-10-aryl-7,8-dihydro-5H-indeno[1,2-b]quinoline-9,11(6H,10H)-diones through the reaction of aromatic aldehydes, indan-1,3-dione, dimedone, and p-toluidine/ammonium acetate in the presence of heterogeneous CuO supported on a zeolite-Y catalyst has been investigated in ethanol under reflux conditions. By this method, the reaction time has been reduced, giving an excellent yield of the product. The catalyst was prepared by a hydrothermal method followed by a wet impregnation method. The catalyst had shown Brønsted acid sites and Lewis acid sites. The used catalyst could be actively recycled with a marginal decrease in yield up to five recycles. The prepared catalyst was characterized by FT-IR, pyridine FT-IR, XRD, SEM, EDS, XPS, TEM, and BET surface area analysis. The synthesized compounds were characterized by FT-IR, 1H NMR, 13C NMR and GC-MS spectroscopy.

5.
Heliyon ; 8(1): e08719, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35059517

ABSTRACT

The empirical affirmation in the electronics industry is that the power of chips per unit area is growing exponentially. The amount of heat generated is equal to the power; hence as power per unit area increases, so does the amount of heat generated within the chip. Thus, it necessary to mitigate the thermal problems of electronic systems. If not addressed or suppressed, thermal problems can lead to various issues including dielectric breakdown, electromigration, material creeping, unwanted chemical reactions, board warpage, drift in performance, and indirect heating. In this study, a dedicated thermal collection network (TCN) in the back end of the line area of an electronic chip was investigated. This network can help in creating a connection using a thermal through Silicon via (TTSV) to pump up the thermal energy to the heat-sink-fan assembly. Pre-empting heat from the sources could manage the thermal issues arising in chips as well as three-dimensional integrated circuit (3-D IC) structures. The finite-element method was the tool used for analysis. 31.62% of heat suction in TCNs of monolithic ICs, 11.36% in TCNs of 3-D IC structures, and 35.34% of heat suction in junctions of TTSVs compared with different approaches without the postulate used here. This procedure is expected to lead to a new path for redesigning electronic chips and 3-D IC structures.

6.
Langmuir ; 37(49): 14527-14539, 2021 12 14.
Article in English | MEDLINE | ID: mdl-34855404

ABSTRACT

We report on the development of an electroformation technique for the preparation of particulate (particle-based) emulsions. These oil-in-water (here, lipid phase acts as an "oil") emulsions were prepared using nonlamellar lipid phases. Such emulsion particles offer high hydrophobic volumes compared to conventional lipid particles based on lamellar phases (vesicles/liposomes). In addition, the tortuous internal nanostructure contributes through greater surface area per volume of lipid particles allowing an enhanced loading of payloads. The electroformation method makes use of a capacitor formed from two indium tin oxide coated conductive glass surfaces separated by a dielectric aqueous medium. This capacitor setup is enclosed in a custom-designed 3D-printed unit. Lipid molecules, deposited on conductive surfaces, self-assemble into a nanostructure in the presence of an aqueous medium, which when subjected to an alternating current electric field forms nano- and/or microparticles. Optical microscopy, dynamic light scattering, and small-angle X-ray scattering techniques were employed for micro- and nanostructural analyses of electroformed particles. With this method, it is possible to produce particulate emulsions at a very low (e.g., 0.0005 wt % or 0.5 mg/mL) lipid concentration. We demonstrate an applicability of the electroformation method for drug delivery by preparing lipid particles with curcumin, which is a highly important but water-insoluble medicinal compound. As the method employs gentle conditions, it is potentially noninvasive for the delivery of delicate biomolecules and certain drugs, which are prone to decomposition or denaturation due to the high thermomechanical energy input and/or nonaqueous solvents required for existing methods.


Subject(s)
Lipids , Nanostructures , Emulsions , Particle Size , Solvents , Water
7.
Int J Biol Macromol ; 183: 203-212, 2021 Jul 31.
Article in English | MEDLINE | ID: mdl-33915212

ABSTRACT

The world is currently facing a novel coronavirus (SARS-CoV-2) pandemic. The greatest threat that is disrupting the normal functioning of society is the exceptionally high species independent transmission. Drug repurposing is understood to be the best strategy to immediately deploy well-characterized agents against new pathogens. Several repurposable drugs are already in evaluation for determining suitability to treat COVID-19. One such promising compound includes heparin, which is widely used in reducing thrombotic events associated with COVID-19 induced pathology. As part of identifying target-specific antiviral compounds among FDA and world-approved libraries using high-throughput virtual screening (HTVS), we previously evaluated top hits for anti-SARS-CoV-2 activity. Here, we report results of highly efficacious viral entry blocking properties of heparin (IC50 = 12.3 nM) in the complete virus assay, and further, propose ways to use it as a potential transmission blocker. Exploring further, our in-silico analysis indicated that the heparin interacts with post-translational glycoconjugates present on spike proteins. The patterns of accessible spike-glycoconjugates in open and closed states are completely contrasted by one another. Heparin-binding to the open conformation of spike structurally supports the state and may aid ACE2 binding as reported with cell surface-bound heparan sulfate. We also studied spike protein mutant variants' heparin interactions for possible resistance. Based on available data and optimal absorption properties by the skin, heparin could potentially be used to block SARS-CoV-2 transmission. Studies should be designed to exploit its nanomolar antiviral activity to formulate heparin as topical or inhalation-based formulations, particularly on exposed areas and sites of primary viremia e.g. ACE2 rich epithelia of the eye (conjunctiva/lids), nasal cavity, and mouth.


Subject(s)
Drug Repositioning , Heparin/chemistry , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/chemistry , COVID-19/prevention & control , COVID-19/transmission , Heparin/therapeutic use , Humans , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/genetics , COVID-19 Drug Treatment
8.
AJNR Am J Neuroradiol ; 41(10): 1825-1832, 2020 10.
Article in English | MEDLINE | ID: mdl-33023913

ABSTRACT

BACKGROUND AND PURPOSE: A new transtentorial venous system consisting of medial, intermediate, and lateral tentorial veins, connecting infra- and supratentorial compartments, was recently shown in 2 cadaver dissections and 2 patient scans. We sought to characterize the venous patterns within the tentorium and their relation to measures of skull development in a cohort of healthy adults. MATERIALS AND METHODS: We retrospectively reviewed tentorial venous anatomy of the head using CTA/CTV performed for routine care or research purposes in 238 patients. Included studies had adequate contrast opacification of venous structures and a section thickness of ≤2 mm; we excluded cases with space-occupying lesions and vascular pathologies. Tentorial angle, dural sinus configurations, and measures of skull base development were assessed as predictors of tentorial venous anatomy variation via Cramér V association, the binary encoded Pearson correlation, and nearest-point algorithm with the Euclidean distance metric for clustering. RESULTS: Tentorial vein development was related to the ringed configuration of the tentorial sinuses (P < .005). There were 3 configurations. Groups 1A and 1B (n = 50/238) had ringed configuration, while group 2 did not (n = 188/238). Group 1A (n = 38/50) had a medialized ringed configuration, and group 1B had a lateralized ringed configuration (n = 12/50). Measurements of skull base development were predictive of these groups. The ringed configuration of group 1 was related to the presence of a split confluens, which correlated with a decreased internal auditory canal-petroclival fissure angle. Configuration 1A was related to the degree of petrous apex pneumatization (P value = .010). CONCLUSIONS: Variations in the transtentorial venous system directly correlate with cranial development.


Subject(s)
Cranial Sinuses/anatomy & histology , Dura Mater/blood supply , Cadaver , Humans
9.
RSC Adv ; 10(5): 3020-3028, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-35496134

ABSTRACT

The gadolinium-doped ceria Gd0.1Ce0.9O1.95 (10GDC) powder was synthesized using a microwave-synthesized glycine nitrate process (MS-GNP). The powder was subsequently pressed into circular pellets and sintered at various temperatures viz. 800, 900, 1000 and 1200 °C, in a microwave, high temperature furnace for 4 h so as to investigate the effect of the sintering temperature and sintering environment on the structural, morphological, thermal and electrical properties. The crystallite size and particle size as observed from X-Ray Diffraction (XRD) and Field Emission Scanning Electron Microscopy (FESEM) are found to be in the range of 15-28 nm and 12-20 nm, respectively. The electrochemical impedance spectroscopy (EIS) analysis was carried out to study the electrochemical properties during the cooling cycle from 400 °C to 800 °C. The highest value of ionic conductivity (3.55 × 10-1 S cm-1) is observed at an operating temperature of 800 °C and O2 gas partial pressure of 1 atm. Further, it is observed that the sintering temperature has a significant effect on the surface morphology and crystallite size, thereby improving the electrical performance of the samples. Though 20GDC was used as an electrolyte in the authors' previous study, the novelty of the present work is the synthesis of 10GDC using a microwave-assisted glycine nitrate process and the size (thickness) of the prepared electrolyte for use in a Solid Oxide Fuel Cell (SOFC), which plays a major role in enhancing the structural, morphological and electrochemical properties with respect to different sintering temperatures as compared to the reported data. Hence, the prepared 10GDC electrolyte may be treated as one of the promising candidates as an electrolyte for SOFC for intermediate as well as high temperature applications.

10.
J Ethnopharmacol ; 249: 112393, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31743764

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Convolvulus pluricaulis Choisy commonly known as Shankhapushpi, is traditionally prescribed for nerve debility, loss of memory, epilepsy and as nervine tonic. Plant also proved to have diverse pharmacological activity but the neuroprotection in ischemic stroke were not found. AIM OF THE STUDY: To investigate the effect of Convolvulus pluricaulis against bilateral common carotid artery (BCCA) occlusion induced cerebral ischemic reperfusion injury. MATERIALS AND METHODS: The neuroprotective activity of Convolvulus pluricaulis against bilateral common carotid artery (BCCA) occlusion induced cerebral ischemic reperfusion (I/S) injury. Sprague-Dawley rats of either sex (200-250 g) were divided into nine groups of 8 rats each. Sham and control group, saline treated 10 ml/kg orally. Third group treated with Quercetin 25 mg/kg orally and fourth to ninth groups treated with chloroform and ethanol extract of Convolvulus pluricaulis 100, 200, and 400 mg/kg (p.o.) respectively. Control, Quercetin and extract treated groups underwent 30 min BCCA occlusion and 24 h reperfusion on 10th day but sham underwent same surgery without BCCA occlusion and 24 h reperfusion on 10th day. The antioxidant enzymatic and non-enzymatic levels were estimated by UV spectroscopic method and cerebral infarction area, Blood brain barrier disruption, microtubule-associated protein 2 immunohistochemical and histopathological studies were carried out. RESULTS: The results of the study indicate that the chloroform and ethanol extract of Convolvulus pluricaulis showed neuroprotective activity by a significant decrease in lipid peroxidation (p < 0.001) and an increase in superoxide dismutase (p < 0.01, p < 0.001), catalase (p < 0.01, p < 0.001), glutathione (p < 0.001), and total thiol (p < 0.001) levels in extract-treated groups as compared to control group. Measurement of cerebral infarction area, blood brain barrier disruption, microtubule-associated protein 2 immunohistochemical and histopathological studies further supported the protective effect of the extract. CONCLUSIONS: Present study revile that Convolvulus pluricaulis has potent neuroprotection against bilateral common carotid artery (BCCA) occlusion induced cerebral ischemic reperfusion injury.


Subject(s)
Convolvulus/chemistry , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Reperfusion Injury/drug therapy , Animals , Antioxidants/metabolism , Brain Ischemia/prevention & control , Cerebral Infarction/drug therapy , Dose-Response Relationship, Drug , Female , Male , Microtubule-Associated Proteins/metabolism , Neuroprotective Agents/administration & dosage , Neuroprotective Agents/isolation & purification , Oxidative Stress/drug effects , Plant Extracts/administration & dosage , Quercetin/pharmacology , Rats , Rats, Sprague-Dawley , Reperfusion Injury/pathology , Stroke/prevention & control
11.
Chem Rec ; 19(9): 1995-2021, 2019 Sep.
Article in English | MEDLINE | ID: mdl-30848052

ABSTRACT

Efficacious waste utilization is vital in context of sustainability. The past decade has witnessed attempts of usage of land biomass and wastes for various applications, contributing towards a sustainable society. Exploitation of the marine biomass, which does not compete with habitation and food production like land biomass has been largely unnoticed and therefore not being utilized judiciously. Researchers have mainly exploited these resources as functional materials having significant potential applications. However, a catalytic perspective for the valorisation of these polymers arising from oceanic waste widens their scope and ameliorates its use. The objective of the present review is to demonstrate the effectiveness of chitin/chitosan as a catalyst and as a feedstock for deriving important fuels and chemicals. It displays all the reactions heterogeneously catalyzed by them along with the strategic methodology. Their important catalytic organic transformations attempted so far, have also been discussed. The future perspectives are also presented which if inculcated would improve the value addition of the waste, paving a way for greener and imperishable world.

12.
Chem Phys Lipids ; 218: 16-21, 2019 01.
Article in English | MEDLINE | ID: mdl-30476486

ABSTRACT

We report the first method to calculate a very important molecular level parameter of amphiphilic molecules- the 'chain splay'. The calculations employed a truncated cone geometry, as it is the most probable configuration adopted by various amphiphiles. This approach utilized known parameters including lipid length, cross-sectional area at the head group and molecular volume. This new parameter, i.e. the area at the chain end, perceived to be more sensitive than Israelachvili's famous shape factor or critical packing parameter (CPP). With relevant calculations, we demonstrate the fundamental roles of 'chain splay' to: a) reveal the critical contribution of molecular structure on average molecular shape and consequent self-assemblies, b) track the finest changes in molecular shapes within different bicontinuous cubic phases, c) obtain non-zero areas at the chain ends of amphiphiles that form normal (type 1) phases, d) back-calculate molecular volumes close to theoretical values, and e) find the link between molecular shapes and global curvatures of self-assemblies. This powerful feature advances our abilities towards quantitative estimation of spatial configurations adopted by amphiphilic molecules; moreover, it has a strong impact on predicting biomembrane structuring and nanoscale design of corresponding self-assemblies for a range of emerging applications.


Subject(s)
Lipids/chemistry , Molecular Dynamics Simulation , Surface-Active Agents/chemistry , Hydrophobic and Hydrophilic Interactions , Micelles , Molecular Structure
13.
Langmuir ; 34(45): 13626-13637, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30347980

ABSTRACT

Bile salts (BSs) are important for the digestion and absorption of fats and fat-soluble vitamins in the small intestine. In this work, we scrutinized, with small-angle X-ray scattering (SAXS), the crucial functions of bile salts beyond their capacity for the interfacial stabilization of submicrometer-sized lipid particles. By studying a wide compositional range of BS-lipid dispersions using two widely applied lipids for drug-delivery systems (one a monoglyceride being stabilizer-sensitive and the other an aliphatic alcohol being relatively stabilizer-insensitive), we identified the necessary BS to lipid ratios to guarantee full emulsification. A novel ad hoc developed global small-angle-X-ray scattering analysis method revealed that the addition of BS hardly changes the bilayer thicknesses in bicontinuous phases, while significant membrane thinning is observed in the coexisting fluid lamellar phase. Furthermore, we show that a BS strongly decreases the average critical packing parameter. At increasing BS concentration, the order of phases formed is (i) the bicontinuous diamond cubic ( Pn3 m), (ii) the bicontinuous primitive cubic ( Im3 m), and (iii) the fluid lamellar phase ( Lα). These distinctive findings on BS-driven "emulsification" and "membrane curvature reduction" provide new molecular-scale insights for the understanding of the interfacial action of bile salts on lipid assemblies.


Subject(s)
Bile Acids and Salts/chemistry , Emulsions/chemistry , Fatty Alcohols/chemistry , Glycerides/chemistry , Nanostructures/chemistry , Deoxycholic Acid/chemistry , Micelles , Scattering, Small Angle , Sodium Cholate/chemistry , Viscosity , X-Ray Diffraction
14.
ACS Omega ; 3(5): 5491-5501, 2018 May 31.
Article in English | MEDLINE | ID: mdl-31458753

ABSTRACT

Heterogeneous Zr-Mont catalyst prepared by a simple protocol was employed for the production of diesel fuel precursors via Friedel-Crafts (FC) alkylation of petroleum-derived arenes (e.g., mesitylene, xylene, and toluene) with biomass-derived 5-(hydroxymethyl)furfural (HMF), HMF derivatives, and carbohydrates. Initially, several acidic catalysts were screened for the FC alkylation of mesitylene with HMF in nitroethane solvent. Among all, Zr-Mont catalyst gave an exceptionally high yield (80%) of mesitylmethylfurfural (MMF). The catalytic activity of Zr-Mont was also evaluated for the alkylation of different petroleum-derived arenes with ester/halogen derivatives of HMF. Suitable acid strength and high surface area of Zr-Mont were its major attributes to make it the most efficient solid acid catalyst for this FC reaction. Even after several reuses, the catalytic activity of Zr-Mont was found to be consistent, which was also evidenced by the acidity measurements of fresh and reused Zr-Mont catalysts by temperature-programmed desorption of ammonia and pyridine Fourier transform infrared spectroscopy techniques. Direct conversion of glucose to diesel fuel precursors was also attempted over Zr-Mont catalyst in mesitylene and polar nonacidic solvents at 150 °C. However, the activity of Zr-Mont catalyst was limited for glucose dehydration to HMF and MMF did not form. When the same experiment was performed in formic acid medium, MMF was produced in 34% yield. After the addition of formic acid, the reaction becomes biphasic which contains mesitylene as an organic phase and formic acid as an aqueous phase. Formic acid worked as a solvent, reactant, and cocatalyst, whereas mesitylene worked as a reactant and product extraction phase to enable easy product isolation. With this strategy, other diesel fuel precursors were also produced in 26-30% yields from glucose and different arenes. Similar strategy was successfully extended for the conversion of sucrose to diesel fuel precursors.

15.
ACS Omega ; 3(8): 9860-9871, 2018 Aug 31.
Article in English | MEDLINE | ID: mdl-31459114

ABSTRACT

Direct one-pot hydrogenation of furfural (FFR) to cyclopentanone (CPO) was investigated over different silica-supported Pd catalysts. Among these, 4% Pd on fumed silica (4%Pd/f-SiO2) showed remarkable results, achieving almost 98% furfural (FFR) conversion with ∼89% selectivity and 87% yield to cyclopentanone at 165 °C and 500 psig H2 pressure. More interestingly, the fumed-silica-supported catalyst tuned the selectivity toward the rearrangement product, i.e., cyclopentanone, whereas all of the other supports were found to give ring hydrogenation as well as side chain hydrogenation products due to their parent Brönsted acidity and specific support properties. X-ray diffraction data revealed the presence of different phases of the face-centered cubic lattice of metallic Pd along with lowest crystallite size of 15.6 nm in the case of the silica-supported Pd catalyst. However, Pd particle size was found to be in the range of 5-13 nm with even dispersion over the silica support, confirmed by high-resolution transmission electron microscopy analysis. While studying the effect of reaction parameters, it was observed that lower temperature gave low furfural conversion of 58% with only 51% CPO selectivity. Similarly, higher H2 pressure lowered CPO selectivity with subsequent increase in 2-methyl furan and ring hydrogenation product 2-methyl furan and 2-methyl tetrahydrofuran. Thus, as per the requirement, the product selectivity can be tuned by varying the type of support and/or the reaction parameters suitably. With the help of several control experiments and the characterization data, a plausible reaction pathway was proposed for the selective formation of cyclopentanone.

16.
Langmuir ; 33(38): 9907-9915, 2017 09 26.
Article in English | MEDLINE | ID: mdl-28826212

ABSTRACT

Three-dimensionally organized lipid cubic self-assemblies and derived oil-in-water emulsions called "cubosomes" are attractive for various biotechnological applications due to their ability to be loaded with functional molecules and their associated sustained release properties. Here, we employed both of these lipid-based systems for the delivery of a model drug, aspirin, under comparable conditions. Studies were performed by varying drug-to-lipid ratio and the type of release medium, water and phosphate buffer saline (PBS). Release rates were determined using UV-vis spectroscopy, and small-angle X-ray scattering was used to confirm the type of self-assembled nanostructures formed in these lipid systems. The release from the bulk lipid cubic phase was sustained as compared to that of dispersed cubosomes, and the release in PBS was more efficient than in water. The tortuosity of the architecture, length of the diffusion pathway, type of nanostructure, and physicochemical interaction with the release media evidently contribute to these observations. This work is particularly important as it is the first report where both of these nanostructured lipid systems have been studied together under similar conditions. This work provides important insights into understanding and therefore controlling the release behavior of lipid-based drug nanocarriers.


Subject(s)
Aspirin/chemistry , Diffusion , Drug Delivery Systems , Lipids , Nanostructures , Water
17.
J Obstet Gynaecol India ; 67(4): 233-236, 2017 08.
Article in English | MEDLINE | ID: mdl-28706359
18.
J Obstet Gynaecol India ; 67(3): 153-156, 2017 06.
Article in English | MEDLINE | ID: mdl-28546659
19.
ACS Omega ; 2(5): 2238-2247, 2017 May 31.
Article in English | MEDLINE | ID: mdl-31457575

ABSTRACT

A domino synthesis of 3-indolylquinones was achieved successfully via direct oxidative C-C coupling of hydroquinones with indoles over Ag2O and Fe3O4/povidone-phosphotungstic acid (PVP-PWA) catalysts using H2O2 in tetrahydrofuran at room temperature. Ag2O catalyzed the in situ oxidation of hydroquinone and 3-indolylhydroquinone intermediates, whereas ferrite solid acid, Fe3O4/PVP-PWA, with a 1:4:1 ratio of Fe3O4, PVP, and PWA, catalyzed the activation of quinones. The efficiency of this catalytic domino approach was established by a broad scope of substrates involving a variety of hydroquinones and quinones to give high yields (81-97%) of 3-indolylquinones. Fe3O4/PVP-PWA was separated magnetically, whereas simple filtration could separate Ag2O, both of which could be recycled several times without losing their activities.

20.
Langmuir ; 32(45): 11907-11917, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27782407

ABSTRACT

We present the first report on the effects of hydrostatic pressure on colloidally stabilized lipid nanoparticles enveloping inverse nonlamellar self-assemblies in their interiors. These internal self-assemblies were systematically tuned into bicontinuous cubic (Pn3m and Im3m), micellar cubic (Fd3m), hexagonal (H2), and inverse micellar (L2) phases by regulating the lipid/oil ratio as the hydrostatic pressure was varied from atmospheric pressure to 1200 bar and back to atmospheric pressure. The effects of pressure on these lipid nanoparticles were compared with those on their equilibrium bulk, nondispersed counterparts, namely, inverse nonlamellar liquid-crystalline phases and micellar solutions under excess-water conditions, using the synchrotron small-angle X-ray scattering (SAXS) technique. In the applied pressure range, induced phase transitions were observed solely in fully hydrated bulk samples, whereas the internal self-assemblies of the corresponding lipid nanoparticles displayed only pressure-modulated single phases. Interestingly, both the lattice parameters and the linear pressure expansion coefficients were larger for the self-assemblies enveloped inside the lipid nanoparticles as compared to the bulk states. This behavior can, in part, be attributed to enhanced lipid layer undulations in the lipid particles in addition to induced swelling effects in the presence of the triblock copolymer F127. The bicontinuous cubic phases both in the bulk state and inside lipid cubosome nanoparticles swell on compression, even as both keep swelling further upon decompression at relatively high pressures before shrinking again at ambient pressures. The pressure dependence of the phases is also modulated by the concentration of the solubilized oil (tetradecane). These studies demonstrate the tolerance of lipid nanoparticles [cubosomes, hexosomes, micellar cubosomes, and emulsified microemulsions (EMEs)] for high pressures, confirming their robustness for various technological applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...