Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Sci Transl Med ; 16(730): eadf1691, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38232139

ABSTRACT

Glycogen synthase 1 (GYS1), the rate-limiting enzyme in muscle glycogen synthesis, plays a central role in energy homeostasis and has been proposed as a therapeutic target in multiple glycogen storage diseases. Despite decades of investigation, there are no known potent, selective small-molecule inhibitors of this enzyme. Here, we report the preclinical characterization of MZ-101, a small molecule that potently inhibits GYS1 in vitro and in vivo without inhibiting GYS2, a related isoform essential for synthesizing liver glycogen. Chronic treatment with MZ-101 depleted muscle glycogen and was well tolerated in mice. Pompe disease, a glycogen storage disease caused by mutations in acid α glucosidase (GAA), results in pathological accumulation of glycogen and consequent autophagolysosomal abnormalities, metabolic dysregulation, and muscle atrophy. Enzyme replacement therapy (ERT) with recombinant GAA is the only approved treatment for Pompe disease, but it requires frequent infusions, and efficacy is limited by suboptimal skeletal muscle distribution. In a mouse model of Pompe disease, chronic oral administration of MZ-101 alone reduced glycogen buildup in skeletal muscle with comparable efficacy to ERT. In addition, treatment with MZ-101 in combination with ERT had an additive effect and could normalize muscle glycogen concentrations. Biochemical, metabolomic, and transcriptomic analyses of muscle tissue demonstrated that lowering of glycogen concentrations with MZ-101, alone or in combination with ERT, corrected the cellular pathology in this mouse model. These data suggest that substrate reduction therapy with GYS1 inhibition may be a promising therapeutic approach for Pompe disease and other glycogen storage diseases.


Subject(s)
Glycogen Storage Disease Type II , Mice , Animals , Glycogen Storage Disease Type II/drug therapy , Glycogen Synthase/metabolism , Glycogen Synthase/pharmacology , Mice, Knockout , Glycogen/metabolism , Muscle, Skeletal/metabolism , Enzyme Replacement Therapy/methods
2.
Sci Rep ; 11(1): 14486, 2021 07 14.
Article in English | MEDLINE | ID: mdl-34262084

ABSTRACT

Krabbe disease (KD) and metachromatic leukodystrophy (MLD) are caused by accumulation of the glycolipids galactosylceramide (GalCer) and sulfatide and their toxic metabolites psychosine and lysosulfatide, respectively. We discovered a potent and selective small molecule inhibitor (S202) of ceramide galactosyltransferase (CGT), the key enzyme for GalCer biosynthesis, and characterized its use as substrate reduction therapy (SRT). Treating a KD mouse model with S202 dose-dependently reduced GalCer and psychosine in the central (CNS) and peripheral (PNS) nervous systems and significantly increased lifespan. Similarly, treating an MLD mouse model decreased sulfatides and lysosulfatide levels. Interestingly, lower doses of S202 partially inhibited CGT and selectively reduced synthesis of non-hydroxylated forms of GalCer and sulfatide, which appear to be the primary source of psychosine and lysosulfatide. Higher doses of S202 more completely inhibited CGT and reduced the levels of both non-hydroxylated and hydroxylated forms of GalCer and sulfatide. Despite the significant benefits observed in murine models of KD and MLD, chronic CGT inhibition negatively impacted both the CNS and PNS of wild-type mice. Therefore, further studies are necessary to elucidate the full therapeutic potential of CGT inhibition.


Subject(s)
Enzyme Inhibitors/pharmacology , Leukodystrophy, Globoid Cell/drug therapy , Leukodystrophy, Metachromatic/drug therapy , N-Acylsphingosine Galactosyltransferase/antagonists & inhibitors , N-Acylsphingosine Galactosyltransferase/metabolism , Animals , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Galactosylceramides/metabolism , Ganglioside Galactosyltransferase/genetics , Ganglioside Galactosyltransferase/metabolism , Humans , Leukodystrophy, Globoid Cell/mortality , Leukodystrophy, Metachromatic/metabolism , Mice, Inbred C57BL , Mice, Knockout , Psychosine/analogs & derivatives , Psychosine/metabolism , Small Molecule Libraries/pharmacology , Sulfotransferases/metabolism , Transferases (Other Substituted Phosphate Groups)/metabolism
3.
Ann Clin Transl Neurol ; 6(12): 2437-2447, 2019 12.
Article in English | MEDLINE | ID: mdl-31814335

ABSTRACT

OBJECTIVE: Neuronal ceroid lipofuscinosis type 2 (CLN2 disease) is a rare, progressive, fatal neurodegenerative pediatric disorder resulting from deficiencies of the lysosomal enzyme tripeptidyl peptidase 1 that are caused by mutations in TPP1. Identifying biomarkers of CLN2 disease progression will be important in assessing the efficacy of therapeutic interventions for this disorder. Neurofilament light is an intrinsic component of healthy neurons; elevated circulating extracellular neurofilament light is a biomarker of neuropathology in several adult-onset neurological diseases. Our objective was to assess whether circulating neurofilament light is a biomarker that is responsive to enzyme replacement therapy (ERT) in CLN2 disease. METHODS: Using an ultrasensitive immunoassay, we assessed plasma neurofilament light changes during disease progression in a canine model of CLN2 disease and in ERT clinical trial CLN2 disease patients. RESULTS: In tripeptidyl peptidase 1 (TPP1)-null dogs (N = 11), but not in control dogs [N = 6 (TPP1+/- ) and N = 27 (WT)], neurofilament light levels increased more than tenfold above initial low baseline levels during disease progression. Before treatment in 21 human subjects with CLN2 disease (age range: 1.72-6.85 years), neurofilament light levels were 48-fold higher (P < 0.001) than in 7 pediatric controls (age range: 8-11 years). Pretreatment neurofilament light did not significantly correlate with disease severity or age. In CLN2 disease subjects receiving ERT, neurofilament light levels decreased by 50% each year over more than 3 years of treatment. INTERPRETATION: Our data indicate that circulating neurofilament light is a treatment-responsive biomarker in CLN2 disease and could contribute to understanding of the pathophysiology of this devastating pediatric disorder.


Subject(s)
Aminopeptidases/pharmacology , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/pharmacology , Disease Progression , Enzyme Replacement Therapy , Neurofilament Proteins/blood , Neuronal Ceroid-Lipofuscinoses/blood , Serine Proteases/pharmacology , Aminopeptidases/genetics , Animals , Animals, Genetically Modified , Biomarkers/blood , Child , Child, Preschool , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/genetics , Disease Models, Animal , Dogs , Female , Humans , Infant , Male , Neurofilament Proteins/drug effects , Neuronal Ceroid-Lipofuscinoses/drug therapy , Recombinant Proteins/pharmacology , Serine Proteases/genetics , Tripeptidyl-Peptidase 1
4.
Mol Genet Metab Rep ; 21: 100524, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31720227

ABSTRACT

INTRODUCTION: GM1 gangliosidosis is a rare autosomal recessive genetic disorder caused by the disruption of the GLB1 gene that encodes ß-galactosidase, a lysosomal hydrolase that removes ß-linked galactose from the non-reducing end of glycans. Deficiency of this catabolic enzyme leads to the lysosomal accumulation of GM1 and its asialo derivative GA1 in ß-galactosidase deficient patients and animal models. In addition to GM1 and GA1, there are other glycoconjugates that contain ß-linked galactose whose metabolites are substrates for ß-galactosidase. For example, a number of N-linked glycan structures that have galactose at their non-reducing end have been shown to accumulate in GM1 gangliosidosis patient tissues and biological fluids. OBJECTIVE: In this study, we attempt to fully characterize the broad array of GLB1 substrates that require GLB1 for their lysosomal turnover. RESULTS: Using tandem mass spectrometry and glycan reductive isotope labeling with data-dependent mass spectrometry, we have confirmed the accumulation of glycolipids (GM1 and GA1) and N-linked glycans with terminal beta-linked galactose. We have also discovered a novel set of core 1 and 2 O-linked glycan metabolites, many of which are part of structurally-related isobaric series that accumulate in disease. In the brain of GLB1 null mice, the levels of these glycan metabolites increased along with those of both GM1 and GA1 as a function of age. In addition to brain tissue, we found elevated levels of both N-linked and O-linked glycan metabolites in a number of peripheral tissues and in urine. Both brain and urine samples from human GM1 gangliosidosis patients exhibited large increases in steady state levels for the same glycan metabolites, demonstrating their correlation with this disease in humans as well. CONCLUSIONS: Our studies illustrate that GLB1 deficiency is not purely a ganglioside accumulation disorder, but instead a broad oligosaccharidosis that include representatives of many ß-linked galactose containing glycans and glycoconjugates including glycolipids, N-linked glycans, and various O-linked glycans. Accounting for all ß-galactosidase substrates that accumulate when this enzyme is deficient increases our understanding of this severe disorder by identifying metabolites that may drive certain aspects of the disease and may also serve as informative disease biomarkers to fully evaluate the efficacy of future therapies.

5.
Thorax ; 72(9): 780-787, 2017 09.
Article in English | MEDLINE | ID: mdl-28250200

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is associated with aberrant expression of developmental pathways, including Hedgehog (Hh). As Hh signalling contributes to multiple pro-fibrotic processes, Hh inhibition may represent a therapeutic option for IPF. However, no non-invasive biomarkers are available to monitor lung Hh activity. METHODS: We assessed gene and protein expression in IPF and control lung biopsies, mouse lung, fibroblasts stimulated in vitro with sonic hedgehog (SHh), and plasma in IPF patients versus controls, and cancer patients before and after treatment with vismodegib, a Hh inhibitor. RESULTS: Lung tissue from IPF patients exhibited significantly greater expression of Hh-related genes versus controls. The gene most significantly upregulated in both IPF lung biopsies and fibroblasts stimulated in vitro with SHh was CXCL14, which encodes a soluble secreted chemokine whose expression is inhibited in vitro by the addition of vismodegib. CXCL14 expression was induced by SHh overexpression in mouse lung. Circulating CXCL14 protein levels were significantly higher in plasma from IPF patients than controls. In cancer patients, circulating CXCL14 levels were significantly reduced upon vismodegib treatment. CONCLUSIONS: CXCL14 is a systemic biomarker that could be used to identify IPF patients with increased Hh pathway activity and monitor the pharmacodynamic effects of Hh antagonist therapy in IPF. TRIAL REGISTRATION NUMBER: Post-results, NCT00968981.


Subject(s)
Chemokines, CXC/biosynthesis , Hedgehog Proteins/physiology , Idiopathic Pulmonary Fibrosis/metabolism , Aged , Anilides/pharmacology , Animals , Antineoplastic Agents/pharmacology , Biomarkers/metabolism , Cells, Cultured , Chemokines, CXC/blood , Chemokines, CXC/drug effects , Chemokines, CXC/genetics , Female , Gene Expression Regulation/physiology , Humans , Idiopathic Pulmonary Fibrosis/genetics , Lung/metabolism , Male , Mice, Inbred C57BL , Middle Aged , Neoplasms/blood , Neoplasms/drug therapy , Pyridines/pharmacology , Signal Transduction/genetics , Signal Transduction/physiology , Up-Regulation/physiology
6.
Thorax ; 70(1): 48-56, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25217476

ABSTRACT

BACKGROUND: There is microscopic spatial and temporal heterogeneity of pathological changes in idiopathic pulmonary fibrosis (IPF) lung tissue, which may relate to heterogeneity in pathophysiological mediators of disease and clinical progression. We assessed relationships between gene expression patterns, pathological features, and systemic biomarkers to identify biomarkers that reflect the aggregate disease burden in patients with IPF. METHODS: Gene expression microarrays (N=40 IPF; 8 controls) and immunohistochemical analyses (N=22 IPF; 8 controls) of lung biopsies. Clinical characterisation and blood biomarker levels of MMP3 and CXCL13 in a separate cohort of patients with IPF (N=80). RESULTS: 2940 genes were significantly differentially expressed between IPF and control samples (|fold change| >1.5, p<0.05). Two clusters of co-regulated genes related to bronchiolar epithelium or lymphoid aggregates exhibited substantial heterogeneity within the IPF population. Gene expression in bronchiolar and lymphoid clusters corresponded to the extent of bronchiolisation and lymphoid aggregates determined by immunohistochemistry in adjacent tissue sections. Elevated serum levels of MMP3, encoded in the bronchiolar cluster, and CXCL13, encoded in the lymphoid cluster, corresponded to disease severity and shortened survival time (p<10(-7) for MMP3 and p<10(-5) for CXCL13; Cox proportional hazards model). CONCLUSIONS: Microscopic pathological heterogeneity in IPF lung tissue corresponds to specific gene expression patterns related to bronchiolisation and lymphoid aggregates. MMP3 and CXCL13 are systemic biomarkers that reflect the aggregate burden of these pathological features across total lung tissue. These biomarkers may have clinical utility as prognostic and/or surrogate biomarkers of disease activity in interventional studies in IPF.


Subject(s)
Chemokine CXCL13/genetics , Gene Expression Regulation , Idiopathic Pulmonary Fibrosis/genetics , Lung/pathology , Matrix Metalloproteinase 3/genetics , Aged , Aged, 80 and over , B-Lymphocytes , Chemokine CXCL13/biosynthesis , Disease Progression , Female , Gene Expression Profiling , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Immunohistochemistry , Lung/metabolism , Male , Matrix Metalloproteinase 3/biosynthesis , Middle Aged , Prognosis , Severity of Illness Index
7.
J Immunol ; 193(1): 111-9, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24879793

ABSTRACT

IL-13 can bind to two distinct receptors: a heterodimer of IL-13Rα1/IL-4Rα and IL-13Rα2. Whereas IL-13Rα1/IL-4Rα engagement by IL-13 leads to the activation of STAT6, the molecular events triggered by IL-13 binding to IL-13Rα2 remain incompletely understood. IL-4 can bind to and signal through the IL-13Rα1/IL-4Rα complex but does not interact with IL-13Rα2. Idiopathic pulmonary fibrosis is a progressive and generally fatal parenchymal lung disease of unknown etiology with no current pharmacologic treatment options that substantially prolong survival. Preclinical models of fibrotic diseases have implicated IL-13 activity on multiple cell types, including macrophages and fibroblasts, in initiating and perpetuating pathological fibrosis. In this study, we show that IL-13, IL-4, IL-13Rα2, and IL-13-inducible target genes are expressed at significantly elevated levels in lung tissue from patients with idiopathic pulmonary fibrosis compared with control lung tissue. IL-4 and IL-13 induce virtually identical transcriptional responses in human monocytes, macrophages, and lung fibroblasts. IL-13Rα2 expression can be induced in lung fibroblasts by IL-4 or IL-13 via a STAT6-dependent mechanism, or by TNF-α via a STAT6-independent mechanism. Endogenously expressed IL-13Rα2 decreases, but does not abolish, sensitivity of lung fibroblasts to IL-13 and does not affect sensitivity to IL-4. Genome-wide transcriptional analyses of lung fibroblasts stimulated with IL-13 in the presence of Abs that selectively block interactions of IL-13 with IL-13Rα1/IL-4Rα or IL-13Rα2 show that endogenously expressed IL-13Rα2 does not activate any unique IL-13-mediated gene expression patterns, confirming its role as a decoy receptor for IL-13 signaling.


Subject(s)
Fibroblasts/immunology , Gene Expression Regulation/immunology , Idiopathic Pulmonary Fibrosis/immunology , Interleukin-13 Receptor alpha2 Subunit/immunology , Interleukin-13/immunology , Lung/immunology , Signal Transduction/immunology , Female , Fibroblasts/pathology , Genome-Wide Association Study , Humans , Idiopathic Pulmonary Fibrosis/pathology , Interleukin-13 Receptor alpha1 Subunit/immunology , Interleukin-4/immunology , Interleukin-4 Receptor alpha Subunit/immunology , Lung/pathology , Macrophages/immunology , Macrophages/pathology , Male , Monocytes/immunology , Monocytes/pathology , STAT6 Transcription Factor/immunology , Tumor Necrosis Factor-alpha/immunology
8.
Proc Natl Acad Sci U S A ; 110(15): E1407-15, 2013 Apr 09.
Article in English | MEDLINE | ID: mdl-23509292

ABSTRACT

Theiler's disease is an acute hepatitis in horses that is associated with the administration of equine blood products; its etiologic agent has remained unknown for nearly a century. Here, we used massively parallel sequencing to explore samples from a recent Theiler's disease outbreak. Metatranscriptomic analysis of the short sequence reads identified a 10.5-kb sequence from a previously undescribed virus of the Flaviviridae family, which we designate "Theiler's disease-associated virus" (TDAV). Phylogenetic analysis clusters TDAV with GB viruses of the recently proposed Pegivirus genus, although it shares only 35.3% amino acid identity with its closest relative, GB virus D. An epidemiological survey of additional horses from three separate locations supports an association between TDAV infection and acute serum hepatitis. Experimental inoculation of horses with TDAV-positive plasma provides evidence that several weeks of viremia preceded liver injury and that liver disease may not be directly related to the level of viremia. Like hepatitis C virus, the best characterized Flaviviridae species known to cause hepatitis, we find TDAV is capable of efficient parenteral transmission, engendering acute and chronic infections associated with a diversity of clinical presentations ranging from subclinical infection to clinical hepatitis.


Subject(s)
Flaviviridae Infections/veterinary , Flaviviridae/genetics , Hepatitis, Viral, Animal/virology , Horses/virology , Animals , Botulinum Toxins/metabolism , Cluster Analysis , Disease Outbreaks , Flaviviridae Infections/virology , Gene Library , Genome, Viral , Metagenomics , Molecular Sequence Data , Phylogeny , RNA, Viral/metabolism , Sequence Analysis, DNA
9.
J Exp Med ; 209(4): 679-96, 2012 Apr 09.
Article in English | MEDLINE | ID: mdl-22430491

ABSTRACT

Estrogen, progesterone, and HER2 receptor-negative triple-negative breast cancers encompass the most clinically challenging subtype for which targeted therapeutics are lacking. We find that triple-negative tumors exhibit elevated MYC expression, as well as altered expression of MYC regulatory genes, resulting in increased activity of the MYC pathway. In primary breast tumors, MYC signaling did not predict response to neoadjuvant chemotherapy but was associated with poor prognosis. We exploit the increased MYC expression found in triple-negative breast cancers by using a synthetic-lethal approach dependent on cyclin-dependent kinase (CDK) inhibition. CDK inhibition effectively induced tumor regression in triple-negative tumor xenografts. The proapoptotic BCL-2 family member BIM is up-regulated after CDK inhibition and contributes to this synthetic-lethal mechanism. These results indicate that aggressive breast tumors with elevated MYC are uniquely sensitive to CDK inhibitors.


Subject(s)
Breast Neoplasms/drug therapy , Cyclin-Dependent Kinases/antagonists & inhibitors , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-myc/physiology , Signal Transduction/physiology , Animals , Apoptosis Regulatory Proteins/analysis , Apoptosis Regulatory Proteins/physiology , Bcl-2-Like Protein 11 , Breast Neoplasms/chemistry , Breast Neoplasms/mortality , Cell Line, Tumor , Female , Humans , Membrane Proteins/analysis , Membrane Proteins/physiology , Mice , Mice, Inbred BALB C , Prognosis , Proto-Oncogene Proteins/analysis , Proto-Oncogene Proteins/physiology , Proto-Oncogene Proteins c-myc/analysis , Proto-Oncogene Proteins c-myc/genetics , Receptor, ErbB-2/analysis , Receptors, Estrogen/analysis , Receptors, Progesterone/analysis , Xenograft Model Antitumor Assays
10.
J Virol ; 84(16): 7934-42, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20534856

ABSTRACT

Genomewide analyses of the mammalian transcriptome have revealed that large tracts of sequence previously annotated as noncoding are frequently transcribed and give rise to stable RNA. Although the transcription of individual genes of the Kaposi's sarcoma-associated herpesvirus (KSHV) has been well studied, little is known of the architecture of the viral transcriptome on a genomewide scale. Here we have employed a genomewide tiling array to examine the lytic transcriptome of the Kaposi's sarcoma-associated herpesvirus, KSHV. Our results reveal that during lytic growth (but not during latency), there is extensive transcription from noncoding regions, including both intergenic regions and, especially, noncoding regions antisense to known open reading frames (ORFs). Several of these transcripts have been characterized in more detail, including (i) a 10-kb RNA antisense to the major latency locus, including many of its microRNAs as well as its ORFs; (ii) a 17-kb RNA antisense to numerous ORFs at the left-hand end of the genome; and (iii) a 0.7-kb RNA antisense to the viral homolog of interleukin-6 (vIL-6). These studies indicate that the lytic herpesviral transcriptome resembles a microcosm of the host transcriptome and provides a useful system for the study of noncoding RNAs.


Subject(s)
Gene Expression Profiling , Herpesvirus 8, Human/physiology , RNA, Antisense/biosynthesis , RNA, Untranslated/biosynthesis , RNA, Viral/biosynthesis , Cells, Cultured , Endothelial Cells/virology , Humans , Oligonucleotide Array Sequence Analysis , Transcription, Genetic
11.
J Virol ; 84(11): 5565-73, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20219929

ABSTRACT

Kaposi's sarcoma-associated herpesvirus (KSHV) is a B-lymphotropic herpesvirus strongly linked to both lymphoproliferative diseases and Kaposi's sarcoma. The viral latency program of KSHV is central to persistent infection and plays important roles in the pathogenesis of KSHV-related tumors. Up to six polypeptides and 18 microRNAs are known to be expressed in latency, but it is unclear if all major latency genes have been identified. Here, we have employed array-based transcript profiling and limiting-dilution reverse transcription-PCR (RT-PCR) methodologies to explore this issue in several KSHV-infected cell lines. Our results show that RNAs encoding the K1 protein are found at low levels in most latently infected cell lines. The gene encoding v-IL-6 is also expressed as a latent transcript in some contexts. Both genes encode powerful signaling molecules with particular relevance to B cell biology: K1 mimics signaling through the B cell receptor, and v-IL-6 promotes B cell survival. These data resolve earlier controversies about K1 and v-IL-6 expression and indicate that, in addition to core latency genes, some transcripts can be expressed in KSHV latency in a context-dependent manner.


Subject(s)
Gene Expression Regulation, Viral , Herpesvirus 8, Human/genetics , RNA, Viral/analysis , Virus Latency/genetics , B-Lymphocytes/cytology , Cell Line , Gene Expression Profiling , Interleukin-6/genetics , Oligonucleotide Array Sequence Analysis , Reverse Transcriptase Polymerase Chain Reaction , Viral Proteins/genetics
12.
PLoS One ; 4(8): e6693, 2009 Aug 19.
Article in English | MEDLINE | ID: mdl-19690609

ABSTRACT

BACKGROUND: The MYC oncogene contributes to induction and growth of many cancers but the full spectrum of the MYC transcriptional response remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Using microarrays, we conducted a detailed kinetic study of genes that respond to MYCN or MYCNDeltaMBII induction in primary human fibroblasts. In parallel, we determined the response to steady state overexpression of MYCN and MYCNDeltaMBII in the same cell type. An overlapping set of 398 genes from the two protocols was designated a 'Core MYC Signature' and used for further analysis. Comparison of the Core MYC Signature to a published study of the genes induced by serum stimulation revealed that only 7.4% of the Core MYC Signature genes are in the Core Serum Response and display similar expression changes to both MYC and serum. Furthermore, more than 50% of the Core MYC Signature genes were not influenced by serum stimulation. In contrast, comparison to a panel of breast cancers revealed a strong concordance in gene expression between the Core MYC Signature and the basal-like breast tumor subtype, which is a subtype with poor prognosis. This concordance was supported by the higher average level of MYC expression in the same tumor samples. CONCLUSIONS/SIGNIFICANCE: The Core MYC Signature has clinical relevance as this profile can be used to deduce an underlying genetic program that is likely to contribute to a clinical phenotype. Therefore, the presence of the Core MYC Signature may predict clinical responsiveness to therapeutics that are designed to disrupt MYC-mediated phenotypes.


Subject(s)
Breast Neoplasms/genetics , Gene Expression Profiling , Genes, myc , Blotting, Western , Breast Neoplasms/blood , Breast Neoplasms/pathology , Cells, Cultured , Female , Humans , Immunohistochemistry , Oligonucleotide Array Sequence Analysis , Prognosis
13.
PLoS One ; 2(8): e811, 2007 Aug 29.
Article in English | MEDLINE | ID: mdl-17726541

ABSTRACT

Lytic infection by Kaposi's sarcoma-associated herpesvirus (KSHV) is associated with an extensive shutoff of host gene expression, mediated chiefly by accelerated mRNA turnover due to expression of the viral SOX protein. We have previously identified a small number of host mRNAs that can escape SOX-mediated degradation. Here we present a detailed, transcriptome-wide analysis of host shutoff, with careful microarray normalization to allow rigorous determination of the magnitude and extent of transcript loss. We find that the extent of transcript reduction represents a continuum of susceptibilities of transcripts to virus-mediated shutoff. Our results affirm that the levels of over 75% of host transcripts are substantially reduced during lytic infection, but also show that another approximately 20% of cellular mRNAs declines only slightly (less than 2-fold) during the course of infection. Approximately 2% of examined cellular genes are strongly upregulated during lytic infection, most likely due to transcriptional induction of mRNAs that display intrinsic SOX-resistance.


Subject(s)
Herpesvirus 8, Human/pathogenicity , Host-Pathogen Interactions/genetics , RNA, Messenger/metabolism , Cells, Cultured , Herpesvirus 8, Human/metabolism , Humans , Transcriptional Activation , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
14.
Mol Cell Biol ; 26(11): 4226-39, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16705173

ABSTRACT

The myc family of oncogenes is well conserved throughout evolution. Here we present the characterization of a domain conserved in c-, N-, and L-Myc from fish to humans, N-Myc317-337, designated Myc box IV (MBIV). A deletion of this domain leads to a defect in Myc-induced apoptosis and in some transformation assays but not in cell proliferation. Unlike other Myc mutants, MycDeltaMBIV is not a simple loss-of-function mutant because it is hyperactive for G2 arrest in primary cells. Microarray analysis of genes regulated by N-MycDeltaMBIV reveals that it is weakened for transactivation and repression but not nearly as defective as N-MycDeltaMBII. Although the mutated region is not part of the previously defined DNA binding domain, we find that N-MycDeltaMBIV has a significantly lower affinity for DNA than the wild-type protein in vitro. Furthermore, chromatin immunoprecipitation shows reduced binding of N-MycDeltaMBIV to some target genes in vivo, which correlates with the defect in transactivation. Thus, this conserved domain has an unexpected role in Myc DNA binding activity. These data also provide a novel separation of Myc functions linked to the modulation of DNA binding activity.


Subject(s)
Apoptosis , Cell Transformation, Neoplastic , Conserved Sequence/genetics , DNA/metabolism , G2 Phase/physiology , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/metabolism , Amino Acid Sequence , Animals , Cell Proliferation , Down-Regulation/genetics , Fibroblasts/cytology , Gene Expression Regulation , Humans , Mice , Microarray Analysis , Molecular Sequence Data , Protein Structure, Tertiary , Rats , Sequence Deletion/genetics , Transcriptional Activation/genetics
15.
Mol Cell Biol ; 22(16): 5793-800, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12138190

ABSTRACT

A cDNA library enriched with Myc-responsive cDNAs but depleted of myc cDNAs was used in a functional screen for growth enhancement in c-myc-null cells. A cDNA clone for mitochondrial serine hydroxymethyltransferase (mSHMT) that was capable of partial complementation of the growth defects of c-myc-null cells was identified. Expression analysis and chromatin immunoprecipitation demonstrated that mSHMT is a direct Myc target gene. Furthermore, a separate gene encoding the cytoplasmic isoform of the same enzyme is also a direct target of Myc regulation. SHMT enzymes are the major source of the one-carbon unit required for folate metabolism and for the biosynthesis of nucleotides and amino acids. Our data establish a novel functional link between Myc and the regulation of cellular metabolism.


Subject(s)
Carbon/metabolism , Cell Physiological Phenomena , Glycine Hydroxymethyltransferase/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Animals , Cell Separation , Cells, Cultured , Fibroblasts/physiology , Flow Cytometry , Gene Library , Genes, myc , Glycine Hydroxymethyltransferase/genetics , Humans , Mitochondria/enzymology , Promoter Regions, Genetic , Proto-Oncogene Proteins c-myc/genetics , Rats , Rats, Mutant Strains
16.
Mol Cell Biol ; 22(14): 5054-63, 2002 Jul.
Article in English | MEDLINE | ID: mdl-12077335

ABSTRACT

We demonstrate that transformation-transactivation domain-associated protein (TRRAP) binding and the recruitment of histone H3 and H4 acetyltransferase activities are required for the transactivation of a silent telomerase reverse transcriptase (TERT) gene in exponentially growing human fibroblasts by c-Myc or N-Myc protein. However, recruitment of TRRAP by c- or N-Myc is dispensable for the partial induction of several basally expressed genes in exponentially growing primary and immortalized fibroblasts. Furthermore, recruitment of TRRAP is required for c-Myc- or N-Myc-mediated oncogenic transformation but not for the partial restoration of the growth defect in myc-null fibroblasts. A segment of the adenovirus E1A protein fused to a transformation-defective N-Myc protein carrying a small deletion in the transactivation domain specifically restores interaction with TRRAP, activates the silent TERT gene, induces acetylation of histones H3 and H4 at the TERT promoter, and transforms primary cells. Accordingly, wild-type L-Myc is much less efficient in TRRAP binding, activation of the silent TERT gene, and transformation of primary fibroblasts. Nevertheless, L-Myc is a potent activator of several basally expressed genes and can fully restore the growth defect of myc-null cells. These results suggest a differential requirement for TRRAP for several Myc-mediated activities.


Subject(s)
Nuclear Proteins/metabolism , Proto-Oncogene Proteins c-myc/metabolism , Saccharomyces cerevisiae Proteins , Telomerase/genetics , Acetyltransferases/metabolism , Adaptor Proteins, Signal Transducing , Adenovirus E1A Proteins/chemistry , Adenovirus E1A Proteins/genetics , Adenovirus E1A Proteins/metabolism , Animals , Cell Line , Cells, Cultured , DNA-Binding Proteins , Histone Acetyltransferases , Humans , Promoter Regions, Genetic , Protein Binding , Protein Structure, Tertiary , Proto-Oncogene Proteins c-myc/chemistry , Proto-Oncogene Proteins c-myc/genetics , Rats , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Transcriptional Activation
SELECTION OF CITATIONS
SEARCH DETAIL
...