Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 24(39): 9892-9902, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-29707835

ABSTRACT

Adjuvant development and understanding the physicochemical properties of particles and interpreting the subsequent immunological responses is a challenge faced by many researchers in the vaccine field. We synthesized and investigated the physicochemical properties and immunogenicity of a library of multiple epitope self-adjuvant lipopeptides in a novel asymmetric arrangement. Vaccine candidates were synthesized using a combination of solid-phase peptide synthesis and copper-mediated click chemistry. In vivo studies showed that vaccine constructs containing a single OVA CD8+ T-cell epitope and two N-terminally located C16 lipid moieties were more effective at generating robust cellular immune responses compared to the same molecule containing multiple copies of the OVA CD8+ T-cell epitope with or without the C16 moieties. Furthermore, attachment of the two C16 lipids to the N-terminus provoked formation of long ß-sheet fibrils and was shown to induce a higher CD8+ donor T-cell frequency and IFN-γ secretion, compared to vaccine constructs with an internal lipid placement. A regression analysis indicated that particle secondary structure had a significant impact on CD8+ donor T-cell frequency and cytolytic activity. In addition, IFN-γ production was influenced significantly by particle shape. The findings of this research will impact the future design of a vaccine intended to elicit cellular immune responses.


Subject(s)
Adjuvants, Immunologic/chemistry , Epitopes, T-Lymphocyte/immunology , Lipopeptides/chemistry , T-Lymphocytes/immunology , Animals , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...