Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Fungal Biol ; 128(2): 1675-1683, 2024 04.
Article in English | MEDLINE | ID: mdl-38575240

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are widely present in the environment, causing increasing concern because of their impact on soil health, food safety and potential health risks. Four bioremediation strategies were examined to assess the dissipation of PAHs in agricultural soil amended with sewage sludge over a period of 120 days: soil-sludge natural attenuation (SS); phytoremediation using maize (Zea mays L.) (PSS); mycoremediation (MR) separately using three white-rot fungi (Pleurotus ostreatus, Phanerochaete chrysosporium and Irpex lacteus); and plant-assisted mycoremediation (PMR) using a combination of maize and fungi. In the time frame of the experiment, mycoremediation using P. chrysosporium (MR-PH) exhibited a significantly higher (P < 0.05) degradation of total PAHs compared to the SS and PSS treatments, achieving a degradation rate of 52 %. Both the SS and PSS treatments demonstrated a lower degradation rate of total PAHs, with removal rates of 18 % and 32 %, respectively. The PMR treatments showed the highest removal rates of total PAHs at the end of the study, with degradation rates of 48-60 %. In the shoots of maize, only low- and medium-molecular-weight PAHs were found in both the PSS and PMR treatments. The calculated translocation and bioconversion factors always showed values < 1. The analysed enzymatic activities were higher in the PMR treatments compared to other treatments, which can be positively related to the higher degradation of PAHs in the soil.


Subject(s)
Pleurotus , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Soil , Sewage , Polycyclic Aromatic Hydrocarbons/metabolism , Soil Pollutants/analysis , Soil Pollutants/metabolism , Pleurotus/metabolism , Zea mays
2.
Ecotoxicol Environ Saf ; 263: 115255, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37478570

ABSTRACT

Even though sewage sludge (SS) contains a high level of pollutants, it is rich in essential plant nutrients and has the potential to enhance soil fertility. However, the SS must be further treated through pre-composting plus vermicomposting to make it safe for use on food crops. More research and data are needed to determine how different carbon-to-nitrogen ratios (C/N) affect the feasibility and quality of composting vs vermicomposting of SS. Therefore, in this study we comprehensively evaluated the feasibility and end-product quality of compost and vermicompost produced from SS under different C/N ratios. SS was mixed with pelletized wheat straw (PWS) at various proportions to produce C/N ratios of 6:1, 18:1, 28:1, and 38:1, then pre-composted for 14 days followed by vermicomposting using the earthworm Eisenia andrei for 120 days. Agrochemical properties were measured at 0, 30, 60, 90, and 120 days. Results revealed significantly higher levels of agrochemicals in vermicompost compared to compost, including total potassium (37-88%) and magnesium (4.3-12%), nitrate nitrogen (71-98%), available potassium (53-88%), available phosphorus (79%), available magnesium (54-453%), available boron (48-303%), and available copper (2.5-82%). However, lower levels of ammonium nitrogen by (59-85%), available iron (2.3-51.3%), available manganese (29.7-52.2%), available zinc (10.5-29.8%), total carbon (0.75-4.5%), and total nitrogen (1.6-22.2%) were measured. Comparison of the various C/N ratios, showed that vermicompost with an 18:1 C/N ratio outperformed compost and demonstrated the highest earthworm population (165 pieces/kg). Thus, vermicomposting SS at an 18:1 C/N ratio is strongly recommended as a sustainable technology for producing high-quality vermicompost from SS.


Subject(s)
Composting , Oligochaeta , Animals , Sewage/chemistry , Feasibility Studies , Magnesium , Carbon , Agrochemicals , Soil/chemistry , Nitrogen
3.
Environ Pollut ; 333: 122060, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37330192

ABSTRACT

Concentration of 16 polycyclic aromatic hydrocarbons (PAHs), 7 polychlorinated biphenyls (PCBs), and 11 organochlorine pesticides (OCPs) in sewage sludge from 40 wastewater treatment plants (WWTPs) was investigated. Relationship between pollutant sludge contents, main WWTP parameters and type of sludge stabilisation was carefully evaluated. Average load of PAHs, PCBs, and OCPs in different sludges from Czech Republic was 3096, 95.7 and 76.1 µg/kg dry weight, respectively. There were moderate/strong correlations among the individual tested pollutants in sludge (r = 0.40-0.76). Relationship between total pollutant contents in sludge, common WWTP parameters and sludge stabilisation was not evident. Only individual pollutants such anthracene and PCB 52 correlated significantly (P < 0.05) with biochemical oxygen demand (r = -0.35) and chemical oxygen demand removal efficiencies (r = -0.35), suggesting recalcitrance to degradation during wastewater treatment. When sorted according to the design capacity, a linear correlation between WWTP size and pollutant contents in sludge was evident with growing WWTP capacity. Our study indicated that WWTPs with anaerobic digestion are prone to accumulate a statistically higher content of PAHs and PCBs (P < 0.05) in digested sludges compared to aerobically digested ones. The influence of anaerobic digestion temperature of treated sludge on tested pollutants was not evident.

4.
Chemosphere ; 328: 138605, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37028715

ABSTRACT

The study was aimed to conduct the bioremediation of synthetic musks by four species of white rot fungi combined with phytoremediation (Zea mays) in biosolid-amended soils where only Galaxolide (HHCB) and Tonalide (AHTN) were found as other musks were below the detection limit (0.5-2 µg/kg dw). The HHCB and AHTN concentration in natural attenuation treated soil was decreased by not more than 9%. In solely mycoremediation, Pleurotus ostreatus was found to be the most efficient fungal strain, with the higher (P < 0.05) HHCB and AHTN removal (51.3% and 46.4%). Phytoremediation-only of biosolid-amended soil was also able to remove HHCB and AHTN from soil significantly (P < 0.05) in comparison to the control treatment without plants which resulted in the final concentration for both compounds of 56.2 and 15.3 µg/kg dw, respectively. Using white rot fungus-assisted phytoremediation, only P. ostreatus decreased the HHCB content in soil significantly (P < 0.05) by 44.7%, when compared to the initial concentration. While using Phanerochaete chrysosporium, the AHTN concentration was decreased by 34.5%, which was a significantly lower concentration at the end of experiment compared to the initial value. Via fungus-assisted phytoremediation, the enzymatic activity and fungal biomass were increased, probably due to the presence of roots in association with the soil microbiome, in the process increasing the degradation of fragrances accordingly. This could lead to a higher (P < 0.05) AHTN removal in P. chrysosporium assisted phytoremediation. Estimated HHCB and AHTN bioaccumulation factors in maize were lower than 1, therefore no environmental risk would be posed.


Subject(s)
Basidiomycota , Water Pollutants, Chemical , Biodegradation, Environmental , Biosolids , Tetrahydronaphthalenes/analysis , Benzopyrans/analysis , Water Pollutants, Chemical/analysis
5.
Environ Technol ; : 1-15, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36368925

ABSTRACT

Chicken feathers are hazardous to the environment because of their poor digestibility and potential as a source of environmental contaminants. However, this waste contains valuable plant nutrients that can be recovered and used to improve soil fertility and agricultural productivity. The objectives of this study were to evaluate how effective vermicomposting is at recovering nutrients and changes in enzymatic activity during vermicomposting of hydrolysed chicken feather residues (HCFR). The study included four treatments with three replications at different HCFR and pelletized wheat straw (PWS) mixing proportions: (T1) 25% HCFR+75% PWS with earthworms, (T2) 25% HCFR+75% PWS without earthworms, (T3) 50% HCFR+50% PWS with earthworms, and (T4) 50% HCFR+50% PWS (w/w) without earthworms. Eisenia andrei was used in the experiment for 120 days. Earthworm treatments recovered more available plant nutrients than non-earthworm treatments by 14% N-NO3- (T1); 50% K (T3); 47% Mg (T3); 75% P (T3); 55% B (T3); 34% Cu (T3); 40% Fe (T1); 46% Mn (T3); 11% Zn (T1). However, N-NH4+ was significantly reduced by -80% (T1). Acid phosphatase, arylsulphatase, alanine aminopeptidase, and leucine aminopeptidase were more active in the treatments with earthworms and positively correlated with P and C: N ratio. Alanine aminopeptidase (3752 µmol AMCA.g-1.h-1) and leucine aminopeptidase (4252 µmol AMCL.g-1.h-1) had higher activities in T3 on day 60 of vermicomposting. As a result, the earthworm treatment recovers more plant nutrients than the non-earthworm treatments, and it can be recommended as a better vermicomposting approach for nutrient recovery from HCFR.

6.
Sci Total Environ ; 801: 149777, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34428658

ABSTRACT

Synthetic musk compounds (SMCs) are widely used as fragrances that can be released from different sources and through the sewer system, finally reaching wastewater treatment plants (WWTPs). In this study, 6 synthetic polycyclic and 5 nitro musk compounds were screened in 55 sewage sludge (SS) samples from 43 different WWTPs in the Czech Republic, and the effect of WWTP technology parameters on SMC content in SS was assessed. Galaxolide and Tonalide were predominant synthetic polycyclic musk compounds (SPMCs) detected in all SS tested and accounted for 99.5% of the average content of sludge SMCs (5518 µg/kg dw). The amount of synthetic nitro musk compounds (SNMCs) in SS samples was negligible. The Tonalide content in SS correlated significantly with the WWTP design capacity (r = 0.32, P < 0.05). The significant correlation between chemical oxygen demand (COD) removal efficiency and SMCs (r = -0.37, P < 0.05) partly suggests the recalcitrance of SMCs, mainly of Celestolide, Galaxolide and Tonalide, to biodegradation in WWTPs. A statistically lower SNMC content was found in anaerobically digested sludges than in aerobic ones. There was no significant difference (P > 0.05) between the digestion technology as well as the temperature of anaerobic digestion on the SPMC content in sewage sludge. The wastewater (WW) load percentage or WW hydraulic retention time had no influence on the SMC content in the resulting SS. Musk compounds did not change over time when the SS samples were analysed with a gap of two years, suggesting that sewage sludge for soil applications only needs to be analysed for musk compounds once a year. Our study indicates that the currently common WWTP technologies have only very limited potential to affect the accumulation of musk compounds in sewage sludge.


Subject(s)
Water Pollutants, Chemical , Water Purification , Fatty Acids, Monounsaturated , Nitro Compounds , Sewage , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...