Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Biochemistry ; 52(20): 3564-78, 2013 May 21.
Article in English | MEDLINE | ID: mdl-23617878

ABSTRACT

Ubiquitination is countered by a group of enzymes collectively called deubiquitinases (DUBs); ∼100 of them can be found in the human genome. One of the most interesting aspects of these enzymes is the ability of some members to selectively recognize specific linkage types between ubiquitin in polyubiquitin chains and their endo and exo specificity. The structural basis of exo-specific deubiquitination catalyzed by a DUB is poorly understood. UCH37, a cysteine DUB conserved from fungi to humans, is a proteasome-associated factor that regulates the proteasome by sequentially cleaving polyubiquitin chains from their distal ends, i.e., by exo-specific deubiquitination. In addition to the catalytic domain, the DUB features a functionally uncharacterized UCH37-like domain (ULD), presumed to keep the enzyme in an inhibited state in its proteasome-free form. Herein we report the crystal structure of two constructs of UCH37 from Trichinella spiralis in complex with a ubiquitin-based suicide inhibitor, ubiquitin vinyl methyl ester (UbVME). These structures show that the ULD makes direct contact with ubiquitin stabilizing a highly unusual intramolecular salt bridge between Lys48 and Glu51 of ubiquitin, an interaction that would be favored only with the distal ubiquitin but not with the internal ones in a Lys48-linked polyubiquitin chain. An inspection of 39 DUB-ubiquitin structures in the Protein Data Bank reveals the uniqueness of the salt bridge in ubiquitin bound to UCH37, an interaction that disappears when the ULD is deleted, as revealed in the structure of the catalytic domain alone bound to UbVME. The structural data are consistent with previously reported mutational data on the mammalian enzyme, which, together with the fact that the ULD residues that bind to ubiquitin are conserved, points to a similar mechanism behind the exo specificity of the human enzyme. To the best of our knowledge, these data provide the only structural example so far of how the exo specificity of a DUB can be determined by its noncatalytic domain. Thus, our data show that, contrary to its proposed inhibitory role, the ULD actually contributes to substrate recognition and could be a major determinant of the proteasome-associated function of UCH37. Moreover, our structures show that the unproductively oriented catalytic cysteine in the free enzyme is aligned correctly when ubiquitin binds, suggesting a mechanism for ubiquitin selectivity.


Subject(s)
Helminth Proteins/chemistry , Helminth Proteins/metabolism , Proteasome Endopeptidase Complex/metabolism , Trichinella spiralis/enzymology , Ubiquitin/chemistry , Animals , Catalytic Domain , Kinetics , Proteasome Endopeptidase Complex/chemistry , Protein Conformation , Ubiquitin/metabolism
2.
Bioorg Med Chem Lett ; 22(12): 3900-4, 2012 Jun 15.
Article in English | MEDLINE | ID: mdl-22617491

ABSTRACT

UCHL1 is a 223 amino acid member of the UCH family of deubiquitinating enzymes (DUBs), found abundantly and exclusively expressed in neurons and the testis in normal tissues. Two naturally occurring variants of UCHL1 are directly involved in Parkinson's disease (PD). Not only has UCHL1 been linked to PD, but it has oncogenic properties, having been found abnormally expressed in lung, pancreatic, and colorectal cancers. Although inhibitors of UCHL1 have been described previously the co-crystal structure of the enzyme bound to any inhibitor has not been reported. Herein, we report the X-ray structure of UCHL1 co-crystallized with a peptide-based fluoromethylketone inhibitor, Z-VAE(OMe)-FMK (VAEFMK) at 2.35 Å resolution. The co-crystal structure reveals that the inhibitor binds in the active-site cleft, irreversibly modifying the active-site cysteine; however, the catalytic histidine is still misaligned as seen in the native structure, suggesting that the inhibitor binds to an inactive form of the enzyme. Our structure also reveals that the inhibitor approaches the active-site cleft from the opposite side of the crossover loop as compared to the direction of approach of ubiquitin's C-terminal tail, thereby occupying the P1' (leaving group) site, a binding site perhaps used by the unknown C-terminal extension of ubiquitin in the actual in vivo substrate(s) of UCHL1. This structure provides a view of molecular contacts at the active-site cleft between the inhibitor and the enzyme as well as furnishing structural information needed to facilitate further design of inhibitors targeted to UCHL1 with high selectivity and potency.


Subject(s)
Amino Acid Chloromethyl Ketones/chemistry , Oligopeptides/chemistry , Ubiquitin Thiolesterase/chemistry , Animals , Catalytic Domain , Crystallization , Crystallography, X-Ray , Humans , Models, Molecular , Protein Binding , Protein Conformation , Substrate Specificity , Ubiquitin/chemistry
3.
FEBS J ; 279(6): 1106-18, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22284438

ABSTRACT

Ubiquitin C-terminal hydrolases (UCHs) are cysteine proteases featuring a classical Cys-His-Asp catalytic triad, and also a highly conserved Gln that is thought to be a part of the oxyanion hole. However, the contribution of this side chain to catalysis by UCHs is not known. Herein, we demonstrate that the Gln side chain contributes to rate enhancement in UCHL1, UCHL3, and UCHL5. Mutation of the Gln to Ala in these enzymes impairs the catalytic efficiency, mainly because of a 16-fold to 30-fold reduction in k(cat) , which is consistent with a loss of approximately 2 kcal·mol(-1) in transition state stabilization. However, the contribution to transition state stabilization observed here is rather modest for the side chain's role in oxyanion stabilization. Interestingly, we discovered that the carbonyl oxygen of this side chain is engaged in a C-H···O hydrogen-bonding contact with the CεH group of the catalytic His. Upon further analysis, we found that this interaction is a common active site structural feature in most cysteine proteases, including papain, belonging to families with the QCH(N/D) type of active site configuration. It is possible that removal of the Gln side chain might have abolished the C-H···O interaction, which typically accounts for 2 kcal·mol(-1) of stabilization, leading to the effect on catalysis observed here. Additional studies performed on UCHL3 by mutating the Gln to Glu (strong C-H···O acceptor but oxyanion destabilizer) and to Lys (strong oxyanion stabilizer but lacking C-H···O hydrogen-bonding capability) suggest that the C-H···O hydrogen bond could contribute to catalysis.


Subject(s)
Glutamine/chemistry , Ubiquitin Thiolesterase/chemistry , Amino Acid Sequence , Catalysis , Catalytic Domain , Glutamine/metabolism , Hydrogen Bonding , Kinetics , Models, Molecular , Molecular Sequence Data , Protein Conformation , Ubiquitin Thiolesterase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...